Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳君明
dc.contributor.authorJeng-Rung Jiangen
dc.contributor.author江政融zh_TW
dc.date.accessioned2021-06-15T05:53:08Z-
dc.date.available2010-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation[1] W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory IT-22, 644-654, 1976.
[2] R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Commun. ACM 21, 120-126, 1978.
[3] J. Hoffstein, J. Pipher and J. H. Silverman, NTRU, A Ring-Based Public Key
Cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, J.P. Buhler (ed.), LNCS 1423, Springer-Verlag, Berlin, 267-288, 1998.
[4] Craig Gentry, Fully Homomorphic Encryption Using Ideal Lattices, ACM 41,
169-178, 2009.
[5] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, An Introduction to
Mathematical Cryptography, Springer-Verlag, New York, Undergraduate Texts
in Mathematics, 2008.
[6] Jörn Steuding, Diophantine Analysis, Discrete Mathematics and Its
Applications, Chapman & Hall/CRC, 2005.
[7] O. N. Vasilenko, Number-theoretic Algorithms in Cryptography (Translations of
Mathematical Monographs), American Mathematical Society, 2006.
[8] J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag,
65
Berlin, 1971.
[9] Tommi Meskanen, On the NTRU Cryptosystem, TUCS Dissertations No 63,
2005.
[10] Daniel Rosenberg, NTRUEncrypt and Lattice Attacks, KTH Department of
Numerical Analysis and Computer Science, Royal Institute of Technology
SE-100 44 Stockholm, Sweden, 2004.
[11] C. Dwork, Lattices and Their Application to Cryptography, Lecture Notes,
Stanford University, 1998.
[12] János Pach, Pankaj K. Agarwal, Combinatorial Geometry, John Wiley & Sons
Inc., 1995.
[13] John Horton Conway and N. J. A. Sloane, Sphere Packings, Lattices and
Groups, Springer-Verlag, NY, 3rd ed., 1998.
[14] C. D. Olds, Anneli Lax, Giuliana P. Davidoff, The Geometry of Numbers (New
Mathematical Library), The Mathematical Association of America, 2001.
[15] A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring Polynomials with
Rational Coefficients, Math. Ann. 261, 515-534, 1982.
[16] H. Cohen, A Course in Computational Algebraic Number Theory, volume 138
of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.
[17] B. de Weger, Algorithms for Diophantine equations, Dissertation, Centrum voor
66
Wiskunde en Informatica, Amsterdam, 1988.
[18] C.P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical
algorithms and solving subset sum problems, Proc. of the FCT 1991, LN in
Camp. ScL 529, Springer-Verlag, Berlin, Heidelberg, 68-85, 1991.
[19] M. Pohst, A modification of the LLL-algorithm, J. Symb. Camp. 4, 123-128,
1987.
[20] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,
Theoretical Computer Science 53, 201-224, North-Holland, 1987.
[21] A. Korkine and G. Zolotareff, Sur les forms quadratiques, Math. Annafen 6,
366-389, 1873.
[22] J.C. Lagarias, H.W. Lenstra, Jr. and C.P. Schnorr, Korkine-Zolotareff bases and
successive minima of a lattice and its reciprocal lattice, Tech. Rept., MSRI
07718-86, Mathematical Sciences Research Institute, Berkeley, 1989.
[23] Walter Rudin, Principles of Mathematical Analysis, 3rd edition, New York,
McGraw-Hill, 1976.
[24] NTRU Cryptosystems. Estimated breaking times for NTRU lattices, Technical
report, Technical Report 012, 1999, updated 2003.
http://www.securityinnovation.com/cryptolab/tech_notes.shtml.
[25] Alexander May, Cryptanalysis of NTRU, 1999.
67
[26] J. H. Silverman, Dimension-Reduced Lattices, Zero-Forced Lattices, and the
NTRU Public Key Cryptosystem, Technical Report 013, Version 1, NTRU
Cryptosystems, 1999.
http://www.securityinnovation.com/cryptolab/tech_notes.shtml.
[27] R.C. Merkle and M.E. Hellman, Hiding information and signatures in trapdoor
knapsacks, IEEE Transactions on Information Theory IT-24(5), 525–530, 1978.
[28] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle-Hellman
cryptosystem, IEEE Trans. Inform. Theory, 30(5):699–704, 1984.
[29] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, In Cryptology and
Computational Number Theory (Boulder, CO, 1989), volume 42 of Proc.
Sympos. Appl. Math., pages 75–88. Amer. Math. Soc., Providence, RI, 1990.
[30] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan, Fully
Homomorphic Encryption over the Integers, Eurocrypt 2010, LNCS 6110,
24–43, 2010.
[31] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On Ideal Lattices and
Learning with Errors over Rings, Eurocrypt 2010, LNCS 6110, 1–23, 2010.
[32] Nigel P. Smart and Frederik Vercauteren, Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes, PKC 2010, LNCS 6056, 420–443,
2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47273-
dc.description.abstract首先,本論文將介紹NTRU公鑰系統的基本運作,隨即以密碼分析的角度帶出lattice結構的一些相關知識,並且描述和證明LLL演算法,以說明現今攻擊NTRU系統的主要方法。最後將NTRU系統做更進一步的推廣,於參數上使用一些限制條件,賦予加密函數同態的特性。zh_TW
dc.description.abstractThis thesis introduces how the NTRU cryptosystem works and an elementary cryptanalysis about lattice. After ntroducing NTRU, we briefly describe the lattice structure and LLL, the lattice reduction algorithm from a cryptanalytic point of view, and then express the relations between NTRU and the lattice structure. Finally, we extend the system by adjusting the key space, parameters and message space with
appropriate restrictions to endow NTRU encryption with various properties of ring homomorphism.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:53:08Z (GMT). No. of bitstreams: 1
ntu-99-R97221001-1.pdf: 429582 bytes, checksum: 8316ad2110ce9910ffef1fc45990e325 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書I
中文摘要 II
Abstract II
目錄 III
1 Introduction 1
2 NTRU Public-Key Cryptosystem 3
2.1 Polynomial rings 3
2.2 Encryption and decryption of NTRU 4
3 Lattice Reduction 9
3.1 An introduction to the lattice structure 9
3.2 Original LLL algorithm 20
3.3 Variants of LLL algorithm 29
4 Cryptanalysis by Lattice Reduction 34
4.1 Gaussian expected shortest length 34
4.2 NTRU as a lattice problem 38
4.3 Knapsack as a lattice problem 44
5 NTRU with Homomorphism 47
5.1 Homomorphic encryption 47
5.2 Construct a new NTRU with Homomorphism 48
5.3 An application 60
6 Discussion about the extended NTRU 62
參考文獻 64
dc.language.isoen
dc.titleNTRU 密碼系統之同態運算及其分析zh_TW
dc.titleHomomorphism and Cryptanalysis of NTRUen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊柏因,鄭振牟,黃柏嶧
dc.subject.keyword多項式環,NTRU,lattice,LLL演算法,apprSVP,homomorphic encryption,zh_TW
dc.subject.keywordPolynomial rings,NTRU,lattice,LLL algorithm,apprSVP,homomorphic encryption,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
419.51 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved