請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈偉強 | |
| dc.contributor.author | Lin-Ing Wang | en |
| dc.contributor.author | 王綾霙 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:53:04Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | Alspaugh, J. A., L. M. Cavallo, J. R. Perfect and J. Heitman. (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36: 352-365.
Baker, L. G., C. A. Specht, M. J. Donlin and J. K. Lodge. (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6: 855-867. Balciunas, D. and H. Ronne. (1995) Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res 23: 4421-4425. Biddick, R. and E. T. Young. (2005) Yeast mediator and its role in transcriptional regulation. C R Biol 328: 773-782. Bjorklund, S. and C. M. Gustafsson. (2005) The yeast Mediator complex and its regulation. Trends Biochem Sci 30: 240-244. Blankenship, J. R., S. Fanning, J. J. Hamaker and A. P. Mitchell. (2010) An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 6: e1000752. Blazek, E., G. Mittler and M. Meisterernst. (2005) The mediator of RNA polymerase II. Chromosoma 113: 399-408. Bluhm, B. H. and C. P. Woloshuk. (2006) Fck1, a C-type cyclin-dependent kinase, interacts with Fcc1 to regulate development and secondary metabolism in Fusarium verticillioides. Fungal Genet Biol 43: 146-154. Borggrefe, T., R. Davis, H. Erdjument-Bromage, P. Tempst and R. D. Kornberg. (2002) A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 277: 44202-44207. Bose, I., A. J. Reese, J. J. Ory, G. Janbon and T. L. Doering. (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2: 655-663. Boube, M., L. Joulia, D. L. Cribbs and H. M. Bourbon. (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110: 143-151. Bowdish, K. S. and A. P. Mitchell. (1993) Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 13: 2172-2181. Buckingham, L. E., H. T. Wang, R. T. Elder, R. M. McCarroll, M. R. Slater and R. E. Esposito. (1990) Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87: 9406-9410. Cai, G., T. Imasaki, Y. Takagi and F. J. Asturias. (2009) Mediator structural conservation and implications for the regulation mechanism. Structure 17: 559-567. Carlson, M. and D. Botstein. (1982) Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell 28: 145-154. Carlson, M., B. C. Osmond and D. Botstein. (1981) Mutants of yeast defective in sucrose utilization. Genetics 98: 25-40. Carlson, M., B. C. Osmond, L. Neigeborn and D. Botstein. (1984) A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107: 19-32. Celerin, M., S. T. Merino, J. E. Stone, A. M. Menzie and M. E. Zolan. (2000) Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J 19: 2739-2750. Chadick, J. Z. and F. J. Asturias. (2005) Structure of eukaryotic Mediator complexes. Trends Biochem Sci 30: 264-271. Chang, Y. C., L. A. Penoyer and K. J. Kwon-Chung. (2001a) The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci U S A 98: 3258-3263. Chang, Y. W., S. C. Howard, Y. V. Budovskaya, J. Rine and P. K. Herman. (2001b) The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae. Genetics 157: 17-26. Chang, Y. W., S. C. Howard and P. K. Herman. (2004) The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus. Mol Cell 15: 107-116. Chi, Y., M. J. Huddleston, X. Zhang, R. A. Young, R. S. Annan, S. A. Carr and R. J. Deshaies. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15: 1078-1092. Chou, S., S. Lane and H. Liu. (2006) Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 26: 4794-4805. Chung, S., M. Karos, Y. C. Chang, J. Lukszo, B. L. Wickes and K. J. Kwon-Chung. (2002) Molecular analysis of CPRa, a MATa-specific pheromone receptor gene of Cryptococcus neoformans. Eukaryot Cell 1: 432-439. Cohen, T. J., K. Lee, L. H. Rutkowski and R. Strich. (2003) Ask10p mediates the oxidative stress-induced destruction of the Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p. Eukaryot Cell 2: 962-970. Conaway, R. C., S. Sato, C. Tomomori-Sato, T. Yao and J. W. Conaway. (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci 30: 250-255. Conlan, R. S. and D. Tzamarias. (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007-1015. Cooper, K. F., M. J. Mallory and R. Strich. (1999) Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 19: 3338-3348. Cooper, K. F. and R. Strich. (2002) Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. Eukaryot Cell 1: 66-74. Cullen, P. J. and G. F. Sprague, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97: 13619-13624. Dadachova, E., R. A. Bryan, R. C. Howell, A. D. Schweitzer, P. Aisen, J. D. Nosanchuk and A. Casadevall. (2008) The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res 21: 192-199. Davidson, R. C., M. C. Cruz, R. A. Sia, B. Allen, J. A. Alspaugh and J. Heitman. (2000) Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol 29: 38-48. Davidson, R. C., C. B. Nichols, G. M. Cox, J. R. Perfect and J. Heitman. (2003) A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol Microbiol 49: 469-485. Egloff, S. and S. Murphy. (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24: 280-288. Elmlund, H., V. Baraznenok, M. Lindahl, C. O. Samuelsen, P. J. Koeck, S. Holmberg, H. Hebert and C. M. Gustafsson. (2006) The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci U S A 103: 15788-15793. Feldmesser, M., Y. Kress, P. Novikoff and A. Casadevall. (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68: 4225-4237. Flanagan, P. M., R. J. Kelleher, 3rd, M. H. Sayre, H. Tschochner and R. D. Kornberg. (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436-438. Foiani, M., E. Nadjar-Boger, R. Capone, S. Sagee, T. Hashimshoni and Y. Kassir. (1996) A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Mol Gen Genet 253: 278-288. Fryer, C. J., J. B. White and K. A. Jones. (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16: 509-520. Furumoto, T., A. Tanaka, M. Ito, S. Malik, Y. Hirose, F. Hanaoka and Y. Ohkuma. (2007) A kinase subunit of the human mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells 12: 119-132. Gadebusch, H. H. (1959) Phagocytosis of Cryptococcus neoformans in anemic mice. J Bacteriol 78: 259-262. Gerik, K. J., S. R. Bhimireddy, J. S. Ryerse, C. A. Specht and J. K. Lodge. (2008) PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 7: 1685-1698. Gimeno, C. J., P. O. Ljungdahl, C. A. Styles and G. R. Fink. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090. Guglielmi, B., N. L. van Berkum, B. Klapholz, T. Bijma, M. Boube, C. Boschiero, H. M. Bourbon, F. C. Holstege and M. Werner. (2004) A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32: 5379-5391. Guttmann-Raviv, N., S. Martin and Y. Kassir. (2002) Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol Cell Biol 22: 2047-2056. Hartmann, H. A., R. Kahmann and M. Bolker. (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15: 1632-1641. Hedbacker, K. and M. Carlson. (2008) SNF1/AMPK pathways in yeast. Front Biosci 13: 2408-2420. Helmy, K. Y., K. J. Katschke, Jr., N. N. Gorgani, N. M. Kljavin, J. M. Elliott, L. Diehl, S. J. Scales, N. Ghilardi and M. van Lookeren Campagne. (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124: 915-927. Hengartner, C. J., V. E. Myer, S. M. Liao, C. J. Wilson, S. S. Koh and R. A. Young. (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2: 43-53. Hirst, M., M. S. Kobor, N. Kuriakose, J. Greenblatt and I. Sadowski. (1999) GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol Cell 3: 673-678. Hoang, L. M., J. A. Maguire, P. Doyle, M. Fyfe and D. L. Roscoe. (2004) Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J Med Microbiol 53: 935-940. Hoeppner, S., S. Baumli and P. Cramer. (2005) Structure of the mediator subunit cyclin C and its implications for CDK8 function. J Mol Biol 350: 833-842. Holstege, F. C., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander and R. A. Young. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728. Hsueh, Y. P. and W. C. Shen. (2005) A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot Cell 4: 147-155. Hsueh, Y. P., C. Xue and J. Heitman. (2007) G protein signaling governing cell fate decisions involves opposing Ga subunits in Cryptococcus neoformans. Mol Biol Cell 18: 3237-3249. Hsueh, Y. P., C. Xue and J. Heitman. (2009) A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 28: 1220-1233. Idnurm, A. and J. Heitman. (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3: e95. James, P., J. Halladay and E. A. Craig. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425-1436. James, P. G., R. Cherniak, R. G. Jones, C. A. Stortz and E. Reiss. (1990) Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr Res 198: 23-38. Kelleher, R. J., 3rd, P. M. Flanagan and R. D. Kornberg. (1990) A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209-1215. Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre and R. D. Kornberg. (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599-608. Kornberg, R. D. (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235-239. Krasley, E., K. F. Cooper, M. J. Mallory, R. Dunbrack and R. Strich. (2006) Regulation of the oxidative stress response through Slt2p-dependent destruction of cyclin C in Saccharomyces cerevisiae. Genetics 172: 1477-1486. Kuchin, S., I. Treich and M. Carlson. (2000) A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 97: 7916-7920. Kuchin, S., P. Yeghiayan and M. Carlson. (1995) Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc Natl Acad Sci U S A 92: 4006-4010. Kwon-Chung, K. J. (1975) A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67: 1197-1200. Kwon-Chung, K. J. (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821-833. Kwon-Chung, K. J. and J. E. Bennett. (1978) Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108: 337-340. Kwon-Chung, K. J., J. E. Bennett and J. C. Rhodes. (1982) Taxonomic studies on Filobasidiella species and their anamorphs. Antonie Van Leeuwenhoek 48: 25-38. Kwon-Chung, K. J., J. C. Edman and B. L. Wickes. (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 60: 602-605. Leclerc, V., J. P. Tassan, P. H. O'Farrell, E. A. Nigg and P. Leopold. (1996) Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. Mol Biol Cell 7: 505-513. Lee, B. H., B. M. Kiburz and A. Amon. (2004) Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 14: 2168-2182. Leopold, P. and P. H. O'Farrell. (1991) An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66: 1207-1216. Lew, D. J., V. Dulic and S. I. Reed. (1991) Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66: 1197-1206. Li, L., G. Shen, Z. G. Zhang, Y. L. Wang, J. K. Thompson and P. Wang. (2007) Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans. Mol Biol Cell 18: 4201-4209. Lin, X. and J. Heitman. (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60: 69-105. Lin, X., C. M. Hull and J. Heitman. (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 1017-1021. Lin, X., J. C. Jackson, M. Feretzaki, C. Xue and J. Heitman. (2010) Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet 6: e1000953. Liu, L., R. P. Tewari and P. R. Williamson. (1999) Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun 67: 6034-6039. Liu, O. W., C. D. Chun, E. D. Chow, C. Chen, H. D. Madhani and S. M. Noble. (2008) Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135: 174-188. Lu, Y. K., K. H. Sun and W. C. Shen. (2005) Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol Microbiol 56: 480-491. Luche, R. M., W. C. Smart and T. G. Cooper. (1992) Purification of the heteromeric protein binding to the URS1 transcriptional repression site in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89: 7412-7416. Luche, R. M., R. Sumrada and T. G. Cooper. (1990) A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol Cell Biol 10: 3884-3895. Madhani, H. D. and G. R. Fink. (1998) The riddle of MAP kinase signaling specificity. Trends Genet 14: 151-155. Meinhart, A., T. Kamenski, S. Hoeppner, S. Baumli and P. Cramer. (2005) A structural perspective of CTD function. Genes Dev 19: 1401-1415. Mitchell, A. P. (1994) Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58: 56-70. Mitchell, A. P., S. E. Driscoll and H. E. Smith. (1990) Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol Cell Biol 10: 2104-2110. Moore, T. D. and J. C. Edman. (1993) The a-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13: 1962-1970. Nelson, C., S. Goto, K. Lund, W. Hung and I. Sadowski. (2003) Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421: 187-190. Nonet, M., D. Sweetser and R. A. Young. (1987) Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50: 909-915. Nonet, M. L. and R. A. Young. (1989) Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715-724. Nosanchuk, J. D. and A. Casadevall. (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5: 203-223. Palecek, S. P., A. S. Parikh and S. J. Kron. (2000) Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156: 1005-1023. Papamichos-Chronakis, M., T. Gligoris and D. Tzamarias. (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5: 368-372. Park, H. O. and E. A. Craig. (1989) Positive and negative regulation of basal expression of a yeast HSP70 gene. Mol Cell Biol 9: 2025-2033. Pfeiffer, T. J. and D. H. Ellis. (1992) Environmental isolation of Cryptococcus neoformans var. gattii from Eucalyptus tereticornis. J Med Vet Mycol 30: 407-408. Pitkin, J. W., D. G. Panaccione and J. D. Walton. (1996) A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 ( Pt 6): 1557-1565. Randhawa, H. S., T. Kowshik and Z. U. Khan. (2005) Efficacy of swabbing versus a conventional technique for isolation of Cryptococcus neoformans from decayed wood in tree trunk hollows. Med Mycol 43: 67-71. Ren, S. and B. J. Rollins. (2004) Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117: 239-251. Rohde, J. R., J. Trinh and I. Sadowski. (2000) Multiple signals regulate GAL transcription in yeast. Mol Cell Biol 20: 3880-3886. Roncero, C. and A. Duran. (1985) Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163: 1180-1185. Rosario, I., M. Hermoso de Mendoza, S. Deniz, G. Soro, I. Alamo and B. Acosta. (2005) Isolation of Cryptococcus species including C. neoformans from cloaca of pigeons. Mycoses 48: 421-424. Rosas, A. L. and A. Casadevall. (1997) Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 153: 265-272. Salas, S. D., J. E. Bennett, K. J. Kwon-Chung, J. R. Perfect and P. R. Williamson. (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184: 377-386. Sato, S., C. Tomomori-Sato, T. J. Parmely, L. Florens, B. Zybailov, S. K. Swanson, C. A. Banks, J. Jin, Y. Cai, M. P. Washburn, J. W. Conaway and R. C. Conaway. (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14: 685-691. Shen, W. C., R. C. Davidson, G. M. Cox and J. Heitman. (2002) Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1: 366-377. Sherman, F. (1991) Getting started with yeast. Methods Enzymol 194: 3-21. Shim, W. B. and C. P. Woloshuk. (2001) Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67: 1607-1612. Shinohara, M., S. D. Oh, N. Hunter and A. Shinohara. (2008) Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40: 299-309. Shonn, M. A., R. McCarroll and A. W. Murray. (2002) Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev 16: 1659-1671. Smith, F. C., S. P. Davies, W. A. Wilson, D. Carling and D. G. Hardie. (1999) The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 453: 219-223. Song, W. and M. Carlson. (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 17: 5757-5765. Song, W., I. Treich, N. Qian, S. Kuchin and M. Carlson. (1996) SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol Cell Biol 16: 115-120. Stanhill, A., N. Schick and D. Engelberg. (1999) The yeast Ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19: 7529-7538. Strich, R., M. R. Slater and R. E. Esposito. (1989) Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc Natl Acad Sci U S A 86: 10018-10022. Surosky, R. T., R. Strich and R. E. Esposito. (1994) The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose. Mol Cell Biol 14: 3446-3458. Tang, R. J., J. Breger, A. Idnurm, K. J. Gerik, J. K. Lodge, J. Heitman, S. B. Calderwood and E. Mylonakis. (2005) Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach. Infect Immun 73: 8219-8225. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882. Tscharke, R. L., M. Lazera, Y. C. Chang, B. L. Wickes and K. J. Kwon-Chung. (2003) Haploid fruiting in Cryptococcus neoformans is not mating type a-specific. Fungal Genet Biol 39: 230-237. Tucker, S. C. and A. Casadevall. (2002) Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci U S A 99: 3165-3170. Urban, M., R. Kahmann and M. Bolker. (1996) Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet 251: 31-37. Usaite, R., M. C. Jewett, A. P. Oliveira, J. R. Yates, 3rd, L. Olsson and J. Nielsen. (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5: 319. Vallier, L. G. and M. Carlson. (1994) Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137: 49-54. Wang, P., C. B. Nichols, K. B. Lengeler, M. E. Cardenas, G. M. Cox, J. R. Perfect and J. Heitman. (2002) Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot Cell 1: 257-272. Wheeler, R. T. and G. R. Fink. (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2: e35. Wickes, B. L., U. Edman and J. C. Edman. (1997) The Cryptococcus neoformans STE12a gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol 26: 951-960. Wickes, B. L., M. E. Mayorga, U. Edman and J. C. Edman. (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the a-mating type. Proc Natl Acad Sci U S A 93: 7327-7331. Williamson, P. R., K. Wakamatsu and S. Ito. (1998) Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol 180: 1570-1572. Yan, J., V. Vetvicka, Y. Xia, M. Hanikyrova, T. N. Mayadas and G. D. Ross. (2000) Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM-opsonized erythrocytes or soluble beta-glucan. Immunopharmacology 46: 39-54. Yeh, Y. L., Y. S. Lin, B. J. Su and W. C. Shen. (2009) A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans. Fungal Genet Biol 46: 42-54. Yue, C., L. M. Cavallo, J. A. Alspaugh, P. Wang, G. M. Cox, J. R. Perfect and J. Heitman. (1999) The STE12a homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153: 1601-1615. Zaman, Z., A. Z. Ansari, S. S. Koh, R. Young and M. Ptashne. (2001) Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc Natl Acad Sci U S A 98: 2550-2554. Zaragoza, O. and A. Casadevall. (2006) Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell Microbiol 8: 1862-1876. Zarnack, K., H. Eichhorn, R. Kahmann and M. Feldbrugge. (2008) Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol Microbiol 69: 1041-1053. Zhou, X., C. Heyer, Y. E. Choi, R. Mehrabi and J. R. Xu. (2009) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47: 143-151. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47271 | - |
| dc.description.abstract | 隱球菌 (Cryptococcus neoformans) 為一伺機性之人體病原真菌,亦為一種重要模式真菌。過去的實驗發現,隱球菌具有藍光反應,亦即隱球菌透過藍光調控蛋白質Cwc1和Cwc2形成複合體,感受光線並抑制生殖菌絲的形成。為進一步瞭解隱球菌Cwc複合體抑制生殖菌絲的調控機制,本實驗室利用農桿菌轉殖系統(Agrobacterium-mediated insertional mutagenesis),針對CWC1過度表現株於光照下抑制生殖菌絲之性狀,進行突變篩選;而AY18為一會部分回復生殖菌絲,並產生大量產生同性有性生殖(monokaryotic fruiting)菌絲之突變株,經證明其表現性狀乃因為T-DNA插入隱球菌SSN8同源基因所導致。啤酒酵母菌(Saccharomyces cerevisiae) SSN8基因,為一Mediator,負責調控真核細胞在開始進行轉錄的過程。在啤酒酵母菌中,SSN8基因又稱SRB11/UME3/RYE2/CYCC,參與糖類利用、減數分裂及逆境生長等生理之調控。在本篇的研究中,透過SSN8突變株的建構及分析,瞭解SSN8基因在隱球菌中,負向調控異宗交配生殖、同性有性生殖、侵入菌絲生長(invasive growth),以及黑色素與莢膜的生成,並且影響細胞壁結構及完整性,參與致病性之調控。此外,利用上位性分析(epistasis analysis)、酵母菌雙雜合分析(yeast two-hybrid system),以及基因表現分析,證明Ssn8可能作用於Cpk1費洛蒙調控路徑,以及Cwc複合體調控光反應路徑之下游,負向調控生殖菌絲的形成。綜合本研究之結果,證明隱球菌保守性Mediator同源基因SSN8為一重要負向調控因子,並廣泛地調控隱球菌生理、發生及致病性。 | zh_TW |
| dc.description.abstract | Cryptococcus neoformans is an important human pathogen and also a model for studying fungal physiology and differentiation. Our prior studies have showed that blue light negatively regulates filamentous growth during sexual differentiation via the Cwc1/Cwc2 complex. An Agrobacterium T-DNA insertional mutant AY18 identified in a suppressor screen restores mating filamentation and also dramatically derepress the production of monokaryotic filaments in the overexpressed CWC1 background. Further characterization determined that the disruption of a Saccharomyces cerevisiae SSN8 homologue is responsible for the phenotypes. Ssn8 is a member of the Mediator complex which connects RNA polymerase II and transcriptional regulators during the initiation process. S. cerevisiae SSN8, also named SRB11/UME3/RYE2/CYCC, is widely involved in diverse physiological processes, including sugar utilization, meiosis, and gene regulation in response to different stresses. To determine its roles in C. neoformans, ssn8 deletion mutants were generated in different strain backgrounds. In addition to mating and monokaryotic filamentation, Ssn8 also negatively regulates other processes including invasive growth, and in vitro production of capsule and melanin. Ssn8 is also required for the maintenance of cell wall structure and integrity and virulence. Based on the epistasis analysis, yeast two hybrid assay and gene expression study, we conclude that C. neoformans Ssn8 functions downstream the Cpk1-pheromone response pathway and also resides at one of major branch downstream the Cwc complex along the light-mediated filamentation pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is also required for the virulence in C. neoformans. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:53:04Z (GMT). No. of bitstreams: 1 ntu-99-R96633014-1.pdf: 8002745 bytes, checksum: f46f7da18a46346c1ed91f0a5882a043 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………i
中文摘要………………………………………………………………ii Abstract………………………………………………………………iii Chapter I Introduction………………………………………………1 1.1 Transcription and Mediator……………………………………1 1.2 Studies of SSN8 and SSN8 homologues ………………………4 1.2.1 SSN8………………………………………………………………4 1.2.2 UME3………………………………………………………………7 1.2.3 SSN8 and stress response……………………………………9 1.2.4 SSN8 homologues in filamentous fungi……………………12 1.2.5 C-type cyclin…………………………………………………13 1.3 Cryptococcus neoformans………………………………………14 Chapter II Materials and Methods ………………………………21 2.1 Strains and growth conditions………………………………21 2.2 Sequence alignment of the Ssn8 homologues and generation of the phylogenetic tree……………………………21 2.3 Disruption and reintroduction of the C. neoformans SSN8 gene……………22 2.4 Overexpression of the C. neoformans SSN8 gene…………23 2.5 Isolation of genomic DNA and Southern blot analysis…23 2.6 Northern blot and real-time PCR analyses…………………24 2.7 Cell growth assay………………………………………………25 2.8 Examination for cell morphology……………………………25 2.9 Mating and monokaryotic fruiting assays…………………26 2.10 Invasive growth assay…………………………………………27 2.11 Melanin production assay……………………………………28 2.12 Phenotypic and quantitative analysis of capsule formation…………28 2.13 Sample preparations for gene expression analyses……29 2.14 Yeast two hybrid assay………………………………………30 2.15 Generation of the double mutant strains for epistasis analysis…………31 2.16 Disruption of the C. neoformans SSN3……………………32 2.17 Animal virulence assays………………………………………32 2.18 Transmission electron microscopy…………………………33 Chapter III Results …………………………………………………34 3.1 Disruption of the SSN8 gene is responsible for the phenotypes of AY18 mutant…………………………………………34 3.2 C. neoformans Ssn8 is a Mediator protein containing the conserved Cyclin Box and PEST domain……………………………35 3.3 Deletion of the SSN8 gene in the C. neoformans wild-type strains………36 3.4 Generation of the SSN8 overexpression strains…………37 3.5 Deletion of SSN8 does not affect general growth capability, but affects galactose utilization in C. neoformans………38 3.6 Heterothallic α–a mating is negatively regulated by SSN8……………39 3.7 Monokaryotic filamentation is dramatically de-repressed in the MATa and MATα ssn8 mutants…………………………41 3.8 Mating related genes are de-repressed in the ssn8 mutants…………43 3.9 C. neoformans SSN8 functions downstream of pheromone response pathway……………46 3.10 Disruption of SSN8 alters cell wall structure and integrity…………48 3.11 The ssn8 mutants display invasive growth on rich medium………50 3.12 In vitro production of melanin and capsule is negatively regulated by the SSN8 gene in C. neoformans………52 3.13 C. neoformans Ssn8 is required for virulence…………53 3.14 C. neoformans Ssn8 does not directly interact with Cwc1 or Cwc2 protein and functions downstream the Cwc complex……55 3.15 SSN8 interacts with SSN3 and functions together in C. neoformans…………58 Chapter IV Discussions……………………………………………59 Reference……………………………………………………………100 | |
| dc.language.iso | en | |
| dc.subject | 光反應 | zh_TW |
| dc.subject | 隱球菌 | zh_TW |
| dc.subject | 有性生殖 | zh_TW |
| dc.subject | SSN8同源基因 | zh_TW |
| dc.subject | Mediator | zh_TW |
| dc.subject | light response | en |
| dc.subject | sexual development | en |
| dc.subject | Mediator | en |
| dc.subject | SSN8 | en |
| dc.subject | Cryptococcus neoformans | en |
| dc.title | 隱球菌Mediator Ssn8蛋白質負向生理調控及致病性之探討 | zh_TW |
| dc.title | Mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence in Cryptococcus neoformans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉瑞芬,羅秀容,鄧述諄,藍忠昱 | |
| dc.subject.keyword | 隱球菌,SSN8同源基因,Mediator,有性生殖,光反應, | zh_TW |
| dc.subject.keyword | Cryptococcus neoformans,SSN8,Mediator,sexual development,light response, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
