請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
| dc.contributor.author | Yao-Chuan Yu | en |
| dc.contributor.author | 余曜全 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:52:42Z | - |
| dc.date.available | 2016-06-28 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322: 93-103
Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60: 377-390 Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399 Asada K (1999) The water-water cycle in chloroplasts : scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601-639 Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121: 231-238 Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91 Spec No: 179-194 Bouteau Hel M, Job C, Job D, Corbineau F, Bailly C (2007) ROS signaling in seed dormancy alleviation. Plant Signal Behav 2: 362-364 Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1: 1183-1200 Chang CC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38: 499-511 Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213-218 Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6: 145-150 Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203-206 Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 268-281 Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14: 494-498 Dugdale B, Becker DK, Harding RM, Dale JL (2001) Intronmediated enhancement of the banana bunchy top virus DNA-6 promoter in banana (Musa spp.) embryogenic cells and plants. Plant cell reports 20: 220 - 226 Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ (1993) Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J 4: 433-443 Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446 Fourcroy P, Vansuyt G, Kushnir S, Inze D, Briat JF (2004) Iron-regulated expression of a cytosolic ascorbate peroxidase encoded by the APX1 gene in Arabidopsis seedlings. Plant Physiol 134: 605-613 Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33: 691-705 Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141: 436-445 Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195: 110-123 Gessler NN, Aver'yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc) 72: 1091-1109 Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65: 627-644 Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124: 21-29 Gudynaite-Savitch L, Johnson DA, Miki BL (2009) Strategies to mitigate transgene-promoter interactions. Plant Biotechnol J 7: 472-485 Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451-3469 Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13: 2870-2875 Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58: 3273-3283 Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227: 1141-1150 Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138: 405-413 Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907 Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000) Tissue-preferential expression of a rice alpha-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123: 1005-1014 Jeong YM, Mun JH, Kim H, Lee SY, Kim SG (2007) An upstream region in the first intron of petunia actin-depolymerizing factor 1 affects tissue-specific expression in transgenic Arabidopsis (Arabidopsis thaliana). Plant J 50: 230-239 Jepson I, Martinez A, Sweetman JP (1998) Chemical-inducible gene expression systems for plants - a review. Pestic. Sci. 54: 360-367 Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53: 2201-2206 Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5: 415-424 Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126: 1055-1060 Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K (1999) Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radic Res 31 Suppl: S219-225 Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640 Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45: 346-350 Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149: 43-50 Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142: 1180-1192 Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283: 34197-34203 Kusaba M, Takahashi Y, Nagata T (1996) A multiple-stimuli-responsive as-1-related element of parA gene confers responsiveness to cadmium but not to copper. Plant Physiol 111: 1161-1167 Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26: 1909-1917 Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16: 199-207 Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10: 260-265 McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5' region for use in monocot transformation. Mol Gen Genet 231: 150-160 Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144: 1777-1785 Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47: 785-795 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9: 490-498 Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5: 397-405 Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57: 3033-3042 Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc ∂-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA 94: 2111-2116 Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48: 535-547 Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12: 125-134 Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812 Panchuk, II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129: 838-853 Panchuk, II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222: 926-932 Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C (2007) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89: 567-579 Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139: 1291-1303 Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45: 655-667 Qi X, Zhang Y, Chai T (2007) Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol 143: 50-59 Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res 18: 787-799 Rasco-Gaunt S, Liu D, Li CP, Doherty A, Hagemann K, Riley A, Thompson T, Brunkan C, Mitchell M, Lowe K, Krebbers E, Lazzeri P, Jayne S, Rice D (2003) Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Rep 21: 569-576 Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279: 11736-11743 Rojas A, Almoguera C, Jordano J (1999) Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. Plant J 20: 601-610 Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681: 169-179 Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, Del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170: 43-52 Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326: 277-290 Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11: 455-464 Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29: 269-281 Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M (2001) Heat shock-mediate APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52: 145-151 Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16: 1419-1432 Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101: 7-12 Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27: 483-486 Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38: 995-1014 Schantz ML, Schreiber H, Guillemaut P, Schantz R (1995) Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annum. FEBS Lett 358: 149-152 Schunmann PH, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55: 855-865 Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72 Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113: 1177-1183 Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, Yukawa K, Hachinohe M, Matsumoto H, Komatsu S (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69: 1295-1303 Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53: 1305-1319 Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20: 1041-1044 Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25: 1380-1386 Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55: 1955-1962 Taylor NL, Millar AH (2007) Oxidative stress and plant mitochondria. Methods Mol Biol 372: 389-403 Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224: 300-314 Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59: 761-770 Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165: 514-521 Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498 Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162: 291-299 Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M, Inze D (1999) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40: 515-523 Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inze D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39: 45-58 Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178: 703-718 Weise A, Lalonde S, Kuhn C, Frommer WB, Ward JM (2008) Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol 68: 251-262 Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 14: 673-683 Xiao FH, Xue GP (2001) Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit. plant Cell Rep 20: 667-673 Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10: 88-94 Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781-803 Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221: 523-530 Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123: 223-234 Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26: 1195-1203 Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7: 1681-1689 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47261 | - |
| dc.description.abstract | Ascorbate peroxidase (APX) 是重要的抗氧化酵素,負責催化 H2O2 為 H2O 及 O2 。水稻APX由八個基因所組成,分別稱為OsAPX1~OsAPX8,其中 OsAPX1與OsAPX2位於細胞質,OsAPX3與OsAPX4位於過氧化體,而 OsAPX5~OsAPX8位於葉綠體,有關水稻APX基因調控及功能的相關研究目前仍然相當少。為了瞭解水稻各APX基因對環境逆境的反應,此試驗利用即時定量PCR (qPCR)分析基因表現,結果顯示多數APX基因受NaCl、缺水、重金屬及植物荷爾蒙誘導表現。分析不同發育時期葉部APX基因表現結果顯示,OsAPX2、OsAPX3 及OsAPX8在營養生長期表現量較高,而OsAPX1、OsAPX4、OsAPX5、OsAPX6及OsAPX7則在生殖生長期表現量較高。分析APX基因上游2 Kb啟動子的cis-acting element,結果顯示各啟動子含有許多與植物荷爾蒙(如JA、ABA及SA)以及非生物逆境(如乾旱、低溫及重金屬)相關的cis-acting element。此外,本試驗分析了OsAPXs基因的轉錄起始點,並選殖各基因上游1~1.5 kb啟動子,並以GUS做為報導基因,再利用農桿菌轉殖到水稻中,以探討OsAPX各啟動子之分子特性。PAPXs/GUS轉殖水稻經過組織化學染色分析後,結果顯示幼苗期OsAPX1、OsAPX4、OsAPX5、OsAPX7及 OsAPX8啟動子於根部及地上部都有相當高的活性,而 OsAPX2、OsAPX3 及 OsAPX6 啟動子主要則驅動GUS累積在地上部;孕穗期階段,幾乎全部OsAPX啟動子於葉鞘、莖部及葉身皆有驅動GUS表現,OsAPX2及OsAPX6在莖部則無GUS累積;穎花中,轉殖OsAPX1、OsAPX4、OsAPX5、OsAPX7及OsAPX8 啟動子的水稻在內外穎有較強的GUS表現,而 OsAPX2、OsAPX3及OsAPX6轉殖水稻的GUS則主要表現在花藥中;在種子中,OsAPX1、OsAPX3、OsAPX4、OsAPX5、OsAPX7及OsAPX8啟動子在成熟種子活性較高。這些結果顯示OsAPX基因家族各基因在不同的環境逆境下,受到不同程度的誘導表現,同時在水稻不同生長時期、不同組織也具有差異表現,顯示水稻在特定時期或組織可能有特定的APX基因參與抗氧化反應。本試驗對
OsAPX基因家族各基因表現及啟動子特性的綜合分析,除了讓我們更瞭解APX基因調控的模式之外,未來將可做為研究各APX基因功能的基礎。 | zh_TW |
| dc.description.abstract | Ascorbate peroxidase (APX) is a key antioxidative enzyme which catalyzes the conversion of H2O2 to H2O and O2 in plants. In rice, APX gene family is composed of eight genes, including two in the cytoplasm (OsAPX1and OsAPX2), two in the peroxisome (OsAPX3 and OsAPX4), and four in the chloroplast (OsAPX5, OsAPX6, OsAPX7 and OsAPX8), and yet their gene regulation and functions remain mostly uncharacterized. In order to understand their responses to environmental stresses, quantitative real-time PCR (qPCR) was conducted. The results showed that most OsAPX genes were induced by NaCl, dehydration, heavy metal, and plant hormones. Analysis of the gene expression patterns of the OsAPX genes at different developmental stages indicated that OsAPX2, OsAPX3, and OsAPX8 accumulated abundant transcripts in leaf tissues at the vegetative stage. In contrast, transcripts of OsAPX1, OsAPX4, OsAPX5, OsAPX6, and OsAPX7 highly increased at the reproductive stage. In silico prediction of the 2-kb promoter region upstream of OsAPX translational start codon revealed that lots of cis-elements are related to plant hormones and abiotic stress. In order to characterize the OsAPX promoters, transcriptional start sites (TSS) of OsAPX genes were identified. In addition, 1.0 to 1.5 kb promoter region was isolated to drive GUS expression, and PAPXs/GUS transgenic rice were generated. Histochemical analysis of PAPXs/GUS plants was conducted. High activity levels of OsAPX1, OsAPX4, OsAPX5, OsAPX7, and OsAPX8 promoters were observed in root and shoot tissue of rice seedlings, and the GUS expression driven by OsAPX2, OsAPX3 and OsAPX8 promoters was accumulated mainly in the shoot tissue of rice seedlings. Most of the PAPXs/GUS plants showed GUS activity in leaf sheath, stem, and blade, but GUS activity was not found in stem tissues of both PAPX2/GUS and PAPX6/GUS plants. Strong GUS expression driven by OsAPX1, OsAPX4, OsAPX5, OsAPX7, and OsAPX8 promoters was observed in the glumes of spikelet; meanwhile, OsAPX2, OSAPX3, and OsAPX6 promoters drove GUS expression mainly in anthers. Promoter activity in mature seeds was observed in OsAPX1, OsAPX3, OsAPX4, OsAPX5, OsAPX7, and OsAPX8 genes. In summary, the diverse expression patterns of OsAPX genes indicate that OsAPX genes are induced by different environmental stresses and developmentally regulated. The analysis of PAPXs/GUS transgenic plants further indicates that OsAPX genes have tissue- and stage- specificity. This study provides basic knowledge of the regulatory OsAPX promoters, which may contribute to further functional analysis of OsAPX genes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:52:42Z (GMT). No. of bitstreams: 1 ntu-99-R97623010-1.pdf: 2937728 bytes, checksum: fdef36f427dbbc56f76f4cc192fedc8e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄 ...................................................................................................................... Ⅰ
圖目錄 .................................................................................................................... Ⅱ 表目錄 .................................................................................................................... Ⅲ 附錄 ........................................................................................................................ Ⅳ 中文摘要 ................................................................................................................ Ⅴ 英文摘要 ................................................................................................................ Ⅶ 縮寫字對照表 ........................................................................................................ Ⅸ 壹、前人研究 一、植物與氧化逆境 .......................................................................................... 1 二、植物的抗氧化機制 ...................................................................................... 3 三、Ascorbate peroxidase的研究 ...................................................................... 6 四、基因啟動子控制基因表現 ......................................................................... 10 貳、研究目的 ......................................................................................................... 13 參、材料與方法 一、基因表現分析 ............................................................................................. 14 二、基因轉錄起始點分析 ................................................................................. 17 三、啟動子特性分析 ......................................................................................... 18 四、補充資料 ...................................................................................................... 25 肆、結果 一、OsAPXs基因表現分析 ................................................................................ 28 二、OsAPXs基因啟動子分子特性分析 ............................................................. 29 三、啟動子/GUS的構築策略及轉殖水稻的建立 ............................................ 30 四、POsAPXs/GUS轉殖水稻組織專一性分析 ................................................... 31 伍、討論 一、OsAPX家族基因表現 ................................................................................. 34 二、OsAPXs啟動子具有不同發育時期專一性以及組織專一性 ...................... 36 三、OsAPXs基因的作用可能存在精密且複雜的調控模式 ........................... 36 四、POsAPXs/GUS表現位置與強度不同於內生基因表現的可能原因 ........... 37 五、未來可繼續進行的研究 ............................................................................... 39 陸、引用文獻 ...........................................................................................................41 | |
| dc.language.iso | zh-TW | |
| dc.subject | GUS | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 抗氧化酵素 | zh_TW |
| dc.subject | APX | zh_TW |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | antioxidative enzyme | en |
| dc.subject | promoter | en |
| dc.subject | APX | en |
| dc.subject | rice | en |
| dc.subject | GUS | en |
| dc.title | 水稻 Ascorbate peroxidase 基因家族啟動子之選殖及分子特性分析 | zh_TW |
| dc.title | Cloning and characterization of the promoter of rice ascorbate peroxidase gene family | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鵬林(Pung-Ling Huang),謝旭亮(Hsu-Liang Hsieh),陸重安(Chung-An Lu),侯新龍(Shin-Lon Ho) | |
| dc.subject.keyword | 水稻,抗氧化酵素,APX,啟動子,GUS, | zh_TW |
| dc.subject.keyword | rice,antioxidative enzyme,APX,promoter,GUS, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
