Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47242
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬
dc.contributor.authorYa-Wen Fengen
dc.contributor.author馮雅雯zh_TW
dc.date.accessioned2021-06-15T05:52:02Z-
dc.date.available2015-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationAbbas L, Hajihashemi S, Stead LF, Cooper GJ, Ware TL, Munsey TS, Whitfield TT, and White SJ. 2011. Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol 589(Pt 6):1489-1503.
Alsop D, and Vijayan MM. 2008. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294:711-719.
Alsop D, and Vijayan MM. 2009. Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Phys A 153(1):49-54.
Aluru N, and Vijayan MM. 2009. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocr 164(2-3):142-150.
Bakkers J, Hild M, Kramer C, Furuiani-Seiki M, and Hammerschmidt M. 2002. Zebrafish deltanp63 Is a Direct Target of Bmp Signaling and Encodes a Transcriptional Repressor Blocking Neural Specification in the Ventral Ectoderm. Develop Cell 2:617-627.
Barnes P. 2011. Glucocorticosteroids: current and future directions. Brit J Pharmacol 163(1):29-43.
Brown D, and Breton S. 1996. Mitochondria-rich, Proton-secreting Epithelial Cells. J Exp Biol 199:2345-2358.
Chang WJ, Horng JL, Yan JJ, Hsiao CD, and Hwang PP. 2009. The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296:1192-1201.
Chen CF, Chu CY, Chen TH, Lee SJ, Shen CN, and Hsiao CD. 2011. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS ONE 6(5):e20654.
Eckert D, Buhl S, Weber S, Jager R, and Schorle H. 2005. The AP-2 family of transcription factors. Genome Biol 6(13):246.
Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M, Ookata K, Asakawa K, Kawakami K, Wang W, Weinberg ES et al. . 2009. Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Dev Biol 329(1):116-129.
Feng W. 2003. Cloning and characterization of the mouse AP-2ɛ gene: a novel family member expressed in the developing olfactory bulb. Mol Cell Neurosci 24(2):460-475.
Guellec DL, Morvan-Dubois G, and Sire JY. 2004. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217-231.
Hoffman TL, Javier AL, Campeau SA, Knight RD, and Schilling TF. 2007. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. J Exp Zool Part B 308B(5):679-691.
Horng J, Lin L, and Hwang P. 2009. Functional regulateion of H+ -ATPase-rich cells inzebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296:682-692.
Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, and Hwang PP. 2007. A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2(3):e302.
Hwang P-P. 1990. Salinity effects on development of chloride cells in the larvae of ayu (Plecoglossus altivelis). Mar Biol 107:1-7.
Hwang P-P, and Hirano R. 1985. Effects of Environmental Salinity on Intercellular Organization and Junctional Structure of Chloride Cells in Early Stages of Teleost Development. J Exp Zool 236:115-126.
Hwang PP, and Lee TH. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Phys A 148(3):479-497.
Hwang PP, Lee TH, and Lin LY. 2011. Ion Regulation in Fish Gills: Recent Progress in the Cellular and Molecular Mechanisms. Am J Physiol-Reg I.
Janicke M, Carney TJ, and Hammerschmidt M. 2007. Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307(2):258-271.
Karnaky KJ, Kinter LB, Kinter WB, and Stirling CE. 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol 70:157-177.
Keys A, and Willmer E. 1932. 'Chloride secretion cells' in the gills of fish with special reference to the common eel. J Physiol 76:368 - 378.
Kiilerich P, Milla S, Sturm A, Valotaire C, Chevolleau S, Giton F, Terrien X, Fiet J, Fostier A, Debrauwer L et al. . 2011. Implication of the mineralocorticoid axis in rainbow trout osmoregulation during salinity acclimation. J Endocrinol 209(2):221-235.
Knight RD. 2003. Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130(23):5755-5768.
Koster MI, Kim S, Huang J, Williams T, and Roop DR. 2006. TAp63α induces AP-2γ as an early event in epidermal morphogenesis. Dev Biol 289(1):253-261.
Kwon HJ, Bhat N, Sweet EM, Cornell RA, and Ruley BB. 2010. Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development. PLoS Genet 6(9).
Leask A, Byrne C, and Fuchs E. 1991. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acak Sci USA 88:7948-7952.
Li W, and Cornell RA. 2007. Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol 304(1):338-354.
Luo T, Matsu-Takasaki M, Thomas ML, Weeks DL, and Sargent TD. 2002. Transcription Factor AP-2 Is an Essential and Direct Regulator of Epidermal Development in Xenopus. Dev Biol 245(1):136-144.
Luo T, Zhan Y, Khadka D, Rangarajan J, Cho KW, and Sargent TD. 2005. Regulatory targets for transcription factor ap2 in xenopus embryos. Develop Growth Differ 47:403-413.
Nicolaides NC, Galata Z, Kino T, Chrousos GP, and Charmandari E. 2010. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75(1):1-12.
Oyama N, Takahashi H, Tojo M, Iwatsuki K, Iizuka H, Nakamura K, Homma Y, and Kaneko F. 2002. Different properties of three isoforms (alpha, beta, and gamma) of transcription factor AP-2 in the expression of human keratinocyte genes. Arch Dermatol Res 294(6):273-280.
Pan TC, Liao BK, Huang CJ, Lin LY, and Hwang PP. 2005. Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol 289:1202-1211.
Panteleyev AA, Mitchell PJ, Paus R, and Christiano AM. 2003. Expression Patterns of the Transcription Facator AP-2alpha During Hair Follicle Morphogenesis and Cycling. J Investig Dermatol 121:13-19.
Pellikainen JM, and Kosma VM. 2007. Activator protein-2 in carcinogenesis with a special reference to breast cancer--a mini review. Int Journal Cancer 120(10):2061-2067.
Philpott CW. 1980. Tubular system membranes of teleost chloride cells osmotic response and transport sites. Am J Physiol 238:171-184.
Pikulkaew S, Benato F, Celeghin A, Zucal C, Skobo T, Colombo L, and Dalla Valle L. 2011. The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Dev Dynam 240(4):874-889.
Shelbourne JE. 1957. Site of chloride regulation in marine fish larvae. Nature 108:920-922.
Stoetzel C, Riehm S, Bennouna Greene V, Pelletier V, Vigneron J, Leheup B, Marion V, Helle S, Danse JM, Thibault C et al. . 2009. Confirmation of TFAP2A gene involvement in branchio-oculo-facial syndrome (BOFS) and report of temporal bone anomalies. Am J Med Genet 149A(10):2141-2146.
Takahashi H, Oyama N, Itoh Y, Ishida-Yamamoto A, Kaneko F, and Iizuka H. 2000. Transcriptional factor AP-2gamma increases human cystatin A gene transcription of keratinocytes. Biochem Bioph Res Co 278(3):719-723.
Uchida K, Kaneko T, Yamaychi K, and Hirano t. 1996. Morphometrical Analysis of Chloride Cell Activity in the Gill Filaments and Lamellae and Changes in Na+, K+‐ATPase Activity During Seawater Adaptation in Chum Salmon Fry. J Exp Zool 276:193-200.
Wang X, Bolotin D, Chu DH, Polak L, Williams T, and Fuchs E. 2006. AP-2 : a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol 172(3):409-421.
Wang X, Pasolli HA, Williams T, and Fuchs E. 2008. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol 183(1):37-48.
Wang YF, Tseng YC, Yan JJ, Hiroi J, and Hwang PP. 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl- uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296:1650-1660.
Wenke A-K, and Bosserhoff AK. 2010. Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development. Febs J 277(4):894-902.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47242-
dc.description.abstract魚類具有能調節離子及維持酸鹼平衡的離子細胞,目前已知有四型,分別為富鈉鉀幫浦細胞(Na+-K+-ATPase-riched cell)、富氫幫浦細胞(H+-ATPase-riched cell)、鈉氯離子運輸蛋白細胞(Na+-Cl--cotransporter cell)與泌鉀細胞(K+-secreting cell)。過去於離子細胞上的研究多著重於功能性的分析,較少著墨其細胞分化機制。目前已知魚類胚胎表皮發育完成於受精後14小時; 並且離子細胞於24小時發育成熟,而兩種基因,forkhead box class I3 與glial cell missing 2 已經證實分別參與其分化調控。此研究目的藉由尋找更上游的調控機制,以使離子細胞分化的模型更臻完整。transcription factor activator protein 2a (tfap2a) 與transcription factor activator protein 2c (tfap2c) 兩基因已知與Notch signaling共同調控老鼠皮膚發育。而於斑馬魚的研究中指出tfap2a與tfap2c最早期表現於非神經外胚層中,並且影響神經脊細胞及其衍生細胞的發育。先前研究並無探究tfap2a與tfap2c與魚類表皮發育的關連。魚類中已知調控離子細胞發育的醣皮質素cortisol,當其受器(glucocorticoid receptor)轉譯遭抑制時,會造成tfap2a基因表現顯著降低。
此篇研究發現tfap2a與tfap2c至少表現於兩類的離子細胞。並且藉由抑制tfap2a與tfap2c的轉譯,發現離子細胞的密度因此下降,此結果暗示tfap2a與tfap2c極有可能參與離子細胞的分化。並且以外源性cortisol浸泡魚類胚胎時,tfap2a與tfap2c基因表現皆會於第一天顯著增加 ; 而於第三天時,tfap2a的表現依然顯著上升,然而tfap2c則下降。總結以上所述,本篇研究發現tfap2a與tfap2c極有可能為cortisol的下游基因,並且受其調控而參與離子細胞的發育。
zh_TW
dc.description.abstractIt has been reported for years that ionocytes, a specific cell group in fish skin epithelium and gill, are function on ion-regulation. Four subtypes of ionocytes, which are Na+-K+-ATPase-riched (NaR) cells, H+-ATPase-riched (HR) cells, Na+-Cl--cotransporter (NCC) cells and K+-secreting (KS) cells have been identified in zebrafish so far. Classification of ionocyte subtypes is based on expression of different transporters and enzymes. Even though ionocytes play important role in balancing osmolarity and pH value. Little is known about their developmental mechanism.
From the very beginning, embryonic ectoderm completely develop into epidermis by 14 hours postfertilization (hpf), not only provide the barrier function between the external environment and the internal organ, but also differentiate to ionocytes later in 1 day postfertilization (dpf). During the germ layer formation, BMP signaling stimulates the expression of downstream target, p63, in epidermal stem cells and segregates epithelium cell linage from neural ectoderm. In the skin stem cell pool, delta-Notch signaling separates the ionocyte progenitors from keratinocyte progenitors via lateral inhibition. But the mechanism that regulates stem cell specification is uncertain. These ionocyte progenitors express two duplicated forkhead transcription factor, foxi3a and foxi3b, at tail-bud stage and then downregulate the p63 expression later at 14-somite stage. foxi3a-foxi3b promote a feed-back regulatory loop that may contribute to the subsequent differentiation of NaR and HR cells.
Transcription factor activator protein 2a and 2c, Tfap2a
and Tfap2c, are known to express in early embryonic ectoderm. In mice model, tfap2a
and tfap2c redundantly
control skin development and regulate the transition from skin basal proliferation to suprabasal differentiation. The present study demonstrates that tfap2a and tfap2c are expressed in at least two subtypes of ionocytes, which are NaR cells and HR cells. And the expression of tfap2a and tfap2c is related to the differentiation of ionocytes. Moreover, tfap2a and tfap2c are found to be the potential downstream targets of cortisol signaling, and they may mediate the regulation of ionocyte differentiation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:52:02Z (GMT). No. of bitstreams: 1
ntu-100-R98b45018-1.pdf: 8612190 bytes, checksum: cc03ecb6110a9fff300a599bade11610 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
Introduction 1
Ion regulation and ionocytes 1
Ionocytes in skin 2
Ionocyte differentiation model 2
Regulatory role of Tfap2 family in skin development 3
Possible roles of Tfap2a and Tfap2c in cortisol signaling 5
Aims of the study 6
Materials and methods 7
Animals 7
Preparation of RNA 7
Reverse transcription-PCR analysis 8
Translational knockdown with antisense morpholino oligonucleotide knockdown 8
Immunocytochemistry 9
In situ hybridization 9
Real-Time quantification PCR 10
Cortisol treatment 11
Statics analysis 11
Results 12
RT-PCR analysis of the tfap2a and tfap2c mRNA expression during zebrafish ontogenesis and distribution in adult tissue 12
Time course expression of tfap2a and tfap2c mRNA during embryogenesis from 0 hpf to 24 hpf 12
The mRNA expression of tfap2a and tfap2c in different adult tissues 12
Whole-mount in situ hybridization of tfap2a and tfap2c in zebrafish embryo 13
In situ mRNA expression pattern of tfap2a and tfap2c 13
Co-localization of tfap2a- and tfap2c-expressing cells with Na+-K+-ATPase and H+-ATPase in 3dpf zebrafish embryo 13
Loss-of-function assay of tfap2a and tfap2c 13
mRNA expression of tfap2a and tfap2c after cortisol treatment 14
mRNA expression of tfap2a and tfap2c after GR knockdown 14
Discussion 15
Expression pattern of tfap2a and tfap2c 15
Requirement of tfap2a and tfap2c in epidermal development 16
Expressions of tfap2a and tfap2c after cortisol treatment 18
Conclusion 19
References 20
Table &Figures 26
Figure1. mRNA expression of tfap2a and tfap2c in developing zebrafish. 26
Figure 2. mRNA expression of tfap2a and tfap2c in different adult tissue.. 27
Figure 3. Whole mount in situ hybridization of tfap2a and tfap2c at different stages of zebrafish.. 28
Figure 4. Double labeling images of in situ hybridization and immunocytochemistry in 3dpf zebrafish embryo. 29
Figure 5. The effects of knock-down tfap2a and tfap2c expression by MO on cell density of NaRC (green) and HRC (red) in zebrafish 3dpf embryos. 30
Figure 6. mRNA expression of tfap2a and tfap2c in cortisol treated zebrafish embryos.. 31
Figure 7. Effects of the GR MO on mRNA expreesion of tfap2a and tfap2c in zebrafish embryos. 32
Table 1. Primer sequences of RT-PCR and Real Time quantitative PCR. F: Forward primer, R: Reverse primer 33
dc.language.isoen
dc.subject斑馬魚胚胎zh_TW
dc.subject離子細胞zh_TW
dc.subject表皮發育zh_TW
dc.subjecttfap2aen
dc.subjectepidermisen
dc.subjectionocyteen
dc.subjectcortisolen
dc.subjecttfap2cen
dc.title轉錄因子TFAP2A與TFAP2C在斑馬魚表皮離子細胞分化中扮演之角色zh_TW
dc.titleThe Role of Transcription Factor Activator Protein 2a (TFAP2A) and Transcription Factor Activator Protein 2c (TFAP2C) in Differentiation of Ionocyteen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃聲蘋,黃銓珍,李士傑
dc.subject.keyword離子細胞,表皮發育,斑馬魚胚胎,zh_TW
dc.subject.keywordtfap2a,tfap2c,cortisol,ionocyte,epidermis,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved