Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4723
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅敏輝(Min-Hui Lo)
dc.contributor.authorHao-wei Weyen
dc.contributor.author魏豪緯zh_TW
dc.date.accessioned2021-05-14T17:45:54Z-
dc.date.available2015-07-20
dc.date.available2021-05-14T17:45:54Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-03
dc.identifier.citationAnnamalai, H., P. Liu, and S. P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Clim., 18, 4150–4167, doi:10.1175/JCLI3533.1.
Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Clim., 20, 3164–3189, doi:10.1175/JCLI4156.1.
Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Clim., 15, 3427–3442, doi:10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.
Biggs, T. W., C. a. Scott, A. Gaur, J. P. Venot, T. Chase, and E. Lee, 2008: Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin. Water Resour. Res., 44, 1–18, doi:10.1029/2008WR006847.
Bollasina, M. a., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon. Science (80-. )., 334, 502–505, doi:10.1126/science.1204994.
Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. U. S. A., 104, 13582–13587, doi:10.1073/pnas.0700144104.
Broccoli, A. J., K. a. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, 1–4, doi:10.1029/2005GL024546.
Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dyn., 25, 477–496, doi:10.1007/s00382-005-0040-5.
Chiang, J. C. H., and Y. Fang, 2010: Was the north Pacific wintertime climate less stormy during the mid-Holocene? J. Clim., 23, 4025–4037, doi:10.1175/2010JCLI3510.1.
Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annu. Rev. Earth Planet. Sci., 40, 383–412, doi:10.1146/annurev-earth-042711-105545.
Cole, J. E., 2000: Tropical Pacific Forcing of Decadal SST Variability in the Western Indian Ocean over the Past Two Centuries. Science (80-. )., 287, 617–619, doi:10.1126/science.287.5453.617.
Cook, B. I., M. J. Puma, and N. Y. Krakauer, 2011: Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn., 37, 1587–1600, doi:10.1007/s00382-010-0932-x.
——, S. P. Shukla, M. J. Puma, and L. S. Nazarenko, 2014: Irrigation as an historical climate forcing. Clim. Dyn., doi:10.1007/s00382-014-2204-7.
DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. Atmos., 115, 1–14, doi:10.1029/2010JD013892.
Deser, C., and A. S. Phillips, 2006: Simulation of the 1976/77 climate transition over the North Pacific: Sensitivity to tropical forcing. J. Clim., 19, 6170–6180, doi:10.1175/JCLI3963.1.
——, ——, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Clim., 17, 3109–3124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.
——, M. a Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: patterns and mechanisms. Ann. Rev. Mar. Sci., 2, 115–143, doi:10.1146/annurev-marine-120408-151453.
Douglas, E. M., D. Niyogi, S. Frolking, J. B. Yeluripati, R. a. Pielke, N. Niyogi, C. J. Vörösmarty, and U. C. Mohanty, 2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett., 33, 1–5, doi:10.1029/2006GL026550.
Friedman, A. R., Y. T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim., 26, 5419–5433, doi:10.1175/JCLI-D-12-00525.1.
Gautam, R., 2014: Challenges in Early Warning of the Persistent and Widespread Winter Fog over the Indo-Gangetic Plains: A Satellite Perspective. Reducing Disaster: Early Warning Systems For Climate Change SE - 3, A. Singh and Z. Zommers, Eds., Springer Netherlands, 51–61.
——, N. C. Hsu, M. Kafatos, and S. C. Tsay, 2007: Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res. Atmos., 112, 1–11, doi:10.1029/2005JD007036.
Guimberteau, M., K. Laval, A. Perrier, and J. Polcher, 2012: Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim. Dyn., 39, 1329–1348, doi:10.1007/s00382-011-1252-5.
Hameed, S., and Coauthors, 2000: On the widespread winter fog in Northeastern Pakistan and India. Geophys. Res. Lett., 27, 1891–1894, doi:10.1029/1999GL011020.
Harding, K. J., and P. K. Snyder, 2012a: Modeling the Atmospheric Response to Irrigation in the Great Plains. Part I: General Impacts on Precipitation and the Energy Budget. J. Hydrometeorol., 13, 1667–1686, doi:10.1175/JHM-D-11-098.1.
——, and ——, 2012b: Modeling the Atmospheric Response to Irrigation in the Great Plains. Part II: The Precipitation of Irrigated Water and Changes in Precipitation Recycling. J. Hydrometeorol., 13, 1687–1703, doi:10.1175/JHM-D-11-099.1.
Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.
Held, I. M., and A. Y. Hou, 1980: Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. J. Atmos. Sci., 37, 515–533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.
Horel, J. D., and J. M. Wallace, 1981: Planetary-scale phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.
Hoskins, B. J., and D. J. Karoly, 1981: The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci., 38, 1179–1196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hou, A. Y., and R. S. Lindzen, 1992: The Influence of Concentrated Heating on the Hadley Circulation. J. Atmos. Sci., 49, 1233–1241, doi:10.1175/1520-0469(1992)049<1233:TIOCHO>2.0.CO;2.
Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteorol. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1. http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-12-00121.1 (Accessed June 10, 2015).
Hwang, Y. T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845–2850, doi:10.1002/grl.50502.
Im, E. S., M. P. Marcella, and E. a B. Eltahir, 2014: Impact of potential large-scale irrigation on the West African monsoon and its dependence on location of irrigated area. J. Clim., 27, 994–1009, doi:10.1175/JCLI-D-13-00290.1.
Jung, M., M. Reichstein, and A. Bondeau, 2009a: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences Discuss., 6, 5271–5304, doi:10.5194/bgd-6-5271-2009.
——, ——, and ——, 2009b: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013, doi:10.5194/bg-6-2001-2009.
Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol., 7, 590–610, doi:10.1175/JHM510.1.
Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, 1–6, doi:10.1029/2009GL041677.
——, and Coauthors, 2011: The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. J. Hydrometeorol., 12, 805–822, doi:10.1175/2011JHM1365.1.
Lee, E., W. J. Sacks, T. N. Chase, and J. a. Foley, 2011a: Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res. Atmos., 116, 1–13, doi:10.1029/2010JD014740.
Lee, S., and H. Kim, 2003: The Dynamical Relationship between Subtropical and Eddy-Driven Jets. J. Atmos. Sci., 60, 1490–1503, doi:10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.
Lee, S. Y., J. C. H. Chiang, K. Matsumoto, and K. S. Tokos, 2011b: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceanography, 26, 1–16, doi:10.1029/2010PA002004.
Lindzen, R. S., and A. V. Hou, 1988: Hadley Circulations for Zonally Averaged Heating Centered off the Equator. J. Atmos. Sci., 45, 2416–2427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.
Lo, M. H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301–306, doi:10.1002/grl.50108.
——, C. M. Wu, H. Y. Ma, and J. S. Famiglietti, 2013: The response of coastal stratocumulus clouds to agricultural irrigation in California. J. Geophys. Res. Atmos., 118, 6044–6051, doi:10.1002/jgrd.50516.
Lobell, D. B., and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934-2002. J. Clim., 21, 2063–2071, doi:10.1175/2007JCLI1755.1.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
Molteni, F., T. N. Stockdale, and F. Vitart, 2015: Understanding and modelling extra-tropical teleconnections with the Indo-Pacific region during the northern winter. Clim. Dyn., doi:10.1007/s00382-015-2528-y.
Nakamura, H., 1992: Midwinter Suppression of Baroclinic Wave Activity in the Pacific. J. Atmos. Sci., 49, 1629–1642, doi:10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.
——, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29, 10–13, doi:10.1029/2002GL015535.
——, T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and ??ast Asian winter monsoon. J. Clim., 15, 1855–1874, doi:10.1175/1520-0442(2002)015<1855:IADMRO>2.0.CO;2.
Oleson, K. W., and Coauthors, 2010: Technical Description of version 4.0 of the Community Land Model ( CLM ). NCAR Tech. Note, 266.
Puma, M. J., and B. I. Cook, 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos., 115, 1–15, doi:10.1029/2010JD014122.
Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002, doi:10.1038/nature08238.
Roy, S. Sen, R. Mahmood, D. Niyogi, M. Lei, S. a. Foster, K. G. Hubbard, E. Douglas, and R. Pielke, 2007: Impacts of the agricultural Green Revolution-induced land use changes on air temperatures in India. J. Geophys. Res. Atmos., 112, 1–13, doi:10.1029/2007JD008834.
Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Clim. Dyn., 33, 159–175, doi:10.1007/s00382-008-0445-z.
Saeed, F., S. Hagemann, and D. Jacob, 2009: Impact of irrigation on the South Asian summer monsoon. Geophys. Res. Lett., 36, 1–7, doi:10.1029/2009GL040625.
Saraf, A. K., A. K. Bora, J. Das, V. Rawat, K. Sharma, and S. K. Jain, 2011: Winter fog over the Indo-Gangetic Plains: Mapping and modelling using remote sensing and GIS. Nat. Hazards, 58, 199–220, doi:10.1007/s11069-010-9660-0.
Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Rev., 99, 125–161, doi:10.1016/j.earscirev.2010.02.004.
Shukla, S. P., M. J. Puma, and B. I. Cook, 2014: The response of the South Asian Summer Monsoon circulation to intensified irrigation in global climate model simulations. Clim. Dyn., 42, 21–36, doi:10.1007/s00382-013-1786-9.
Simmons, a. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci., 40, 1363–1392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.
Swann, a. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci., 109, 712–716, doi:10.1073/pnas.1116706108.
Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14291, doi:10.1029/97JC01444.
UNEP, 2008: Vital water graphics – An overview of the state of the world’s fresh and marine waters – 2nd edition.
Voss, K. a., J. S. Famiglietti, M. Lo, C. De Linage, M. Rodell, and S. C. Swenson, 2013: Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res., 49, 904–914, doi:10.1002/wrcr.20078.
Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev., 109, 784–812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.
Wang, S. Y., J. H. Yoon, R. R. Gillies, and C. Cho, 2013: What caused the winter drought in western nepal during recent years? J. Clim., 26, 8241–8256, doi:10.1175/JCLI-D-12-00800.1.
Wisser, D., S. Frolking, E. M. Douglas, B. M. Fekete, C. J. Vörösmarty, and A. H. Schumann, 2008: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett., 35, 1–5, doi:10.1029/2008GL035296.
Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang., 2, 1–5, doi:10.1038/nclimate1580.
Yasmeen, Z., G. Rasul, and M. Zahid, 2012: Impact of Aerosols on Winter Fog of Pakistan. Pakistan J. Meteorol., 8, 21–30.
Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1984: The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change—A Numerical Experiment. Mon. Weather Rev., 112, 474–490, doi:10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2.
Zhang, K., J. S. Kimball, R. R. Nemani, and S. W. Running, 2010: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res., 46, 1–21, doi:10.1029/2009WR008800.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4723-
dc.description.abstract了解農業灌溉對環境造成的影響一直都是重要的課題。人為的水資源管理(如灌溉)足以改變地表的能量收支與水循環。在本研究中,我們關注在亞洲低緯度地區的灌溉行為對冬季時期區域和全球氣候的可能影響。我們利用地球系統模式模擬陸地與大氣交互作用如何受到灌溉的影響,以及大氣環流如何改變。我們發現,不考慮灌溉的模式模擬低估了冬季在印度河─恆河平原的平均蒸發散量。比較有無考慮灌溉的模式模擬結果顯示,低緯度地區的灌溉使得冬季時期有較高的土壤濕度,從而降低了地表鮑文比,經由大氣的迴饋造成整個印度次大陸尺度的地表降溫。由於較大的海陸熱力差異,盛行季風亦有所增強。此外,熱帶地區的降水與中緯度的氣候皆有改變,顯示了熱帶與溫帶間的遙相關關係。冬季的阿留申低壓加深並向東移動,儘管在冬季,北美幾乎沒有進行任何灌溉,但實驗中在北美陸地則有增暖的現象。在前人的研究中曾發現此增暖現象,但並無加以解釋,因此本研究提供了一個合理的機制,亦即此北美的增暖現象是來自於在亞洲低緯度地區進行灌溉所造成的影響。zh_TW
dc.description.abstractThe effect of agricultural irrigation on the environment has long been a critical concern. Anthropogenic water management can change surface-energy budgets and the water cycle. In this study, we focused on the impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. We used a state-of-the-art earth system model to simulate land–air interaction processes affected by water management and the consequent responses in atmospheric circulation. Modeling without considering irrigation underestimates evapotranspiration in the Indo-Gangetic Plain during winter. Perturbed experiments show that wet-soil-moisture anomalies at low latitudes can lower the surface Bowen ratio and reduce the surface temperature to a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land–sea thermal contrast. In addition, anomalous tropical precipitation and midlatitude climatic changes indicate tropical–extratropical teleconnections. The wintertime Aleutian low is deepened and shifts eastward, and an anomalous warm surface temperature is found in North America, although there is little irrigation over North America in the winter. Previous studies have noted this warming but left it unexplained, and we provide a plausible mechanism for these remote impacts, which come from the irrigation over Asian low-latitude regions.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:45:54Z (GMT). No. of bitstreams: 1
ntu-104-R02229011-1.pdf: 19175548 bytes, checksum: 634dc44d6c14fad54fa007b329a54610 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝ii
中文摘要iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xi
1 Introduction 1
2 Methodology 5
2.1 Data sets 5
2.2 Model setup 6
3 Results 8
3.1 Regional impacts induced by the irrigation over the Indo-Gangetic Plain 8
3.2 Remote impacts on the North American winter climate 12
4 Discussion 16
4.1 Remote impacts of winter monsoon variability 16
4.2 Memory effects of soil moisture anomalies 19
4.3 Teleconnection without tropical influences 20
5 Conclusion 22
5.1 Summary 22
5.2 Future works 23
5.2.1 Influences of moisture supply from irrigation to fog formation 24
5.2.2 Irrigation in West Asia impacts to glacier status in Tibetan Plateau
and surroundings 25
5.2.3 Cross basin influences of Indian Ocean 26
Bibliography 29
dc.language.isoen
dc.title農業灌溉於低緯度地區造成之冬季時期高土壤濕度對區域與全球氣候之可能影響zh_TW
dc.titlePotential Impacts of Wintertime Soil Moisture Anomalies from Agricultural Irrigation at Low Latitudes on Regional and Global Climateen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王世宇(Shih-Yu Wang),陳維婷(Wei-Ting Chen),李時雨(Shih-Yu Lee),黃彥婷(Yen-Ting Hwang)
dc.subject.keyword灌溉,陸地─大氣交互作用,印度河─恆河平原,熱帶─溫帶遙相關,阿留申低壓,zh_TW
dc.subject.keywordirrigation,land-air interaction,Indo-Gangetic Plain,tropical-extratropical teleconnection,Aleutian low,en
dc.relation.page60
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf18.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved