Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorSu-Fu Yangen
dc.contributor.author楊書阜zh_TW
dc.date.accessioned2021-06-15T05:51:27Z-
dc.date.available2014-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation1. Rathmann, W. and G. Giani, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004.27(10),2568.
2. Chiang, C.W.,Chen,C. Y.,Chiu,H.F.,Wu,H.L.,Yang,C.Y., Trends in the use of antihypertensive drugs by outpatients with diabetes in Taiwan, 1997-2003. Pharmacoepidemiol Drug Saf, 2007.16(4),412.
3. Thomson, A.B. and G. Wild, Adaptation of intestinal nutrient transport in health and disease. Part I. Dig Dis Sci, 1997. 42(3),453.
4. Thomson, A.B. and G. Wild, Adaptation of intestinal nutrient transport in health and disease. Part II. Dig Dis Sci, 1997. 42(3),470.
5. Campbell, R.K., Type 2 diabetes: where we are today: an overview of disease burden, current treatments, and treatment strategies. J Am Pharm Assoc (2003),2009.49,S3. 6. Guilherme, A.,Virbasius,J.V.,Puri,V.,Czech, M. P., Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol, 2008.9(5), 367.
7. Das, S.K. and R. Chakrabarti, Non-insulin dependent diabetes mellitus: present therapies and new drug targets. Mini Rev Med Chem, 2005. 5(11), 1019.
8. Garg, S.K., The role of basal insulin and glucagon-like peptide-1 agonists in the therapeutic management of type 2 diabetes--a comprehensive review. Diabetes Technol Ther,2010.12(1),11.
9. Cheng, A.Y. and I.G. Fantus, Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ, 2005.172(2), 213.
10. Ranganath, L.R., pathophysiological and therapeutic implications of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J Clin Pathol, 2008. 61(4),401.
11. Diamond, J. M. , Wet transport proteins. Nature, 1996. 384(6610),611.
12. Fischbarg, J. and J.C. Vera, Multifunctional transporter models: lessons from the transport of water, sugars, and ring compounds by GLUTs. Am J Physiol, 1995.268,1077.
13. Hediger, M.A., Coady, M. J., Ikeda,T.S., Wright, E. M. , Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature,1987.330(6146),379.
14. Hediger, M. A. , Ikeda, T. , Coady, M. , Gundersen , C. B. , Wright, E. M. , Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. Proc Natl Acad Sci U S A,1987. 84(9),2634.
81
15. Turk.,Klisak,I.,Bacallao,R.,Sparkes,R.S.,Wright,E.M., Assignment of the human Na+/glucose cotransporter gene SGLT1 to chromosome 22q13.1. Genomics,1993.17(3),752.
16. Zhao, F.Q. and A.F. Keating, Functional properties and genomics of glucose transporters. Curr Genomics, 2007.8(2),113.
17. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G., Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J Membr Biol,1975.21(3-4),375.
18. Wright, E.M., B.A. Hirayama, and D.F. Loo, Active sugar transport in health and disease. J Intern Med, 2007.261(1),32.
19. Oulianova, N. and A. Berteloot, Sugar transport heterogeneity in the kidney: two independent transporters or different transport modes through an oligomeric Protein? 1. Glucose transport studies. J Membr Biol, 1996. 153(3),181.
20. Turk, E., Zabel, B., Mundlos, S., Dyer, J., Wright, E. M., Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature, 1991. 350(6316),354. 21. Hediger, M.A., et al., Molecular genetics of the human Na+/glucose cotransporter. Klin Wochenschr, 1989.67(17),843.
22. Wells, R.G., Pajor, A. M., Kanai, Y., Turk, E., Wright, E. M., Hediger, M. A., Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Physiol, 1992. 263(3),459.
23. Ehrenkranz, J.R., et al., Phlorizin: a review. Diabetes Metab Res Rev, 2005.21(1),31.
24. Katsuno, K., Fujimori, Y., Takemura, Y., Hiratochi, M., Itoh, F., Komatsu, Y., Fujikura, H., Isaji, M., Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther,2007.320(1),323.
25. Meng, W., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. G., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M., Washburn, W. N., Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem, 2008. 51(5),1145.
26. Brooks, A.M. and S.M. Thacker, Dapagliflozin for the treatment of type 2 diabetes. Ann Pharmacother,2009.43(7),1286.82
27. Dapagliflozin: BMS 512148; BMS-512148. Drugs R D, 2010.10(1),47.
28. Kipnes, M., Dapagliflozin: an emerging treatment option in type 2 diabetes. Expert Opin Investig Drugs, 2009.18(3),327.
29. Calado, J., Dapagliflozin, an oral sodium glucose cotransporter type 2 inhibitor for the treatment of type 2 diabetes mellitus. IDrugs, 2009. 12(12),785.
30. Ferrannini, E., Jimenez Ramos, S., Salsali, A., Tang, W., List, J. F., Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Care, 2010.
31. Komoroski, B., Vachharajani, N., Boulton, D., Kornhauser, D., Geraldes, M., Li, L., Pfister, M., Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther, 2009. 85(5),520.
32. Pajor, A.M., Randolph, K. M., Kerner, S. A., Smith, C. D., Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. J Pharmacol Exp Ther, 2008. 324(3): p. 985-91.
33. Kipp, H., Kinne-Saffran, E., Bevan,C., Kinne,R.K., Characteristics of renal Na(+)-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias). Am J Physiol, 1997. 273(1),134.
34. Yu, L.C., Flynn,A.N., Turner,J.R., Buret,A.G., SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J, 2005.19(13),1822. 35. Yu, L.C., Huang,C.Y., Kuo,W.T., Sayer,H., Turner,J.R., Buret,A.G., SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol, 2008. 38(8-9),923-34. 36. Yu, L.C., J.R. Turner, and A.G. Buret, LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res, 2006. 312(17),3276.
37. Castaneda, F. and R.K. Kinne, A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol Cell Biochem, 2005.280(1-2),91. 38. Han, H.J., Lee,Y.J., Park,S.H., Lee,J.H., Taub, M., High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Renal Physiol, 2005. 288(5),988.
39. Hamilton, K.L. and A.G. Butt, The molecular basis of renal tubular transport disorders. Comp Biochem Physiol A Mol Integr Physiol,2000. 126(3),305.
40. Kanai, Y., Lee,W.S.,You,G.Brown,D.Hediger,M.A., The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest, 1994. 93(1),397.83
41. Baker, D. and A. Sali, Protein structure prediction and structural genomics. Science, 2001.294(5540),93.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47225-
dc.description.abstract糖尿病(DM)為盛行全球的慢性病,至今超過1.5億人口患病,且有90%屬於第二型糖尿病(T2DM)。如何有效治療控制糖尿病,嚴然已成為不可忽略之重要課題。SGLT為鈉離子依賴型葡萄糖運輸蛋白,主要有SGLT1與SGLT2型態,為生理上為葡萄糖之吸收與再吸收作用。而具有選擇性SGLT2抑制劑可阻斷葡萄糖再吸收作用,被視為能有效控制血糖以開發為T2DM新穎治療藥物。
我們嘗試建立活體外之篩選系統,利用短暫表達hSGLT1之COS-7細胞株與穩定表達hSGLT2之CHO-K1細胞株為篩選系統之主要架構。透過傳統以輻射性標定受質(14C-AMG:14C-methyl-α-D-glucopyranoside)與螢光標定受質1-NBDG (2-[N- (7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino]- 1-deoxy-D-glucose)及2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose)進行glucose uptake assay篩選出選擇性SGLT2抑制劑。
本系統測試Phlorizin、Dapagliflozin、Core-1及Core-2四種不同化合物。 Phlorizin對SGLT1與SGLT2皆具抑制活性,已知Dapagliflozin為已知對SGLT2有高度選擇抑制性,作為實驗正向控制組。。Core-1與Core-2為我們測試的兩個化合物。由結果得知,Core-1 (SGLT1 IC50 = 12.46 μM; SGLT2 IC50 = 0.72 nM)與Dapagliflozin(SGLT1 IC50 = 1.62 μM; SGLT2 IC50 = 0.28 nM)有相近的抑制活性。Core-2則不具任何明顯活性。
由實驗結果證明我們成功建立篩選選擇性SGLT2抑制劑之活體外系統,此系統不但可篩選其抑制劑,並可利用建立系統架構之SGLT1與SGLT2進行其詳細功能性探討。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T05:51:27Z (GMT). No. of bitstreams: 1
ntu-99-R97423027-1.pdf: 7990227 bytes, checksum: 851c63fadbbc4f5779549da57de36669 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄 I
表目錄 V
圖目錄 VI
ABSTRACT VII
中文摘要 IX
第一章 緒論 P1
1.1 糖尿病簡介 P1
1.1.1 糖尿病 P1
1.1.2 糖尿的機制 P1
1.2 糖尿之治療藥物 P2
1.3 葡萄糖吸收簡介 P3
1.3.1 葡萄糖吸收 P3
1.3.2 葡萄糖吸收通道 P3
1.3.3 SGLT1 P3
1.3.4 SGLT2 P4
1.4 SGLT抑制劑作為治療第二型糖尿病用藥 P4
1.4.1 SGLT 抑制劑 P5
1.4.2 SGLT2抑制劑 P6
1.4.3 Dapagliflozin P6
1.4.4 Core-1 & Core-2 P7
第二章 實驗目的及目標 P18
第三章 實驗材料 P19
3.1 COS-7 與 CHO-K1 細胞培養 P19
3.1.1 試劑 P19
3.1.2 材料與設備 P19
3.2 Transfection & stable clone selection P19
3.2.1 試劑 P20
3.2.2 材料與設備 P20
3.3 聚合酶鏈鎖反應分析 (PCR reaction) P20
3.3.1 試劑 P20
3.3.2 材料與設備 P20
3.4 Digestion & ligation P21
3.4.1 試劑 P21
3.4.2 材料與設備 P21
3.5 Transformation (TM) & 菌株培養 P21
3.5.1 試劑 P21
3.5.2 材料與設備 P21
3.6 蛋白質萃取及濃度測定 P22
3.6.1 試劑 P22
3.6.2 材料與設備 P22
3.7 西方墨點法 P22
3.7.1 試劑 P22
3.7.2 緩衝液配方 P23
3.7.3 一級抗體 P24
3.7.4 二級抗體 P24
3.7.5 材料與設備 P24
3.8 免疫螢光染色 P24
3.8.1 試劑 P24
3.8.2 一級抗體 P25
3.8.3 二級抗體 P25
3.1.4 材料與設備 P25
3.9 活體外轉譯蛋白質系統 P25
3.9.1 試劑 P25
3.9.2 材料與設備 P25
3.10 輻射性標定或螢光標定醣衍生物受質之攝取測試 P25
3.10.1 試劑 P25
3.10.2 緩衝液製備 P26
3.10.3 材料與設備 P27
3.11 其他 P27
3.11.1 緩衝液配方及試劑製備 P27
3.11.2 引子 P29
第四章 實驗方法 P30
4.1 實驗設計流程 P30
4.2 SGLT 質體建立 P31
4.3 由大腸桿菌萃取質體 P34
4.4 CO-7 與 CHO-K1 細胞株培養 P36
4.5 短暫性表達hSGLT細胞株 P37
4.6 建立穩定表達hSGLT細胞株 P37
4.7 西方墨點法實驗流程 P38
4.8 反轉錄聚合酶鏈鎖反應 P41
4.9 免疫螢光染色 P42
4.10 Glucose uptake assay (螢光標定醣衍生物為受質) P42
4.11 Glucose uptake assay (輻射性標定醣衍生物為受質) P42
第五章 實驗結果 P45
5.1 hSGLT 質體之建立 P45
5.1.1 hSGLT1 P45
5.1.2 hSGLT2 P46
5.2 偵測hSGLTs蛋白在細胞之表達 P47
5.2.1 短暫性表達hSGLTs之 COS-7 細胞 P47
5.2.2 穩定性表達hSGLT2之 CHO-K1細胞 P49
5.3 以glucose uptake assay 測試表達hSGLT蛋白之功能性 P50
5.3.1 以輻射性標定醣衍生物為受質進行glucose uptake assay P50
5.3.2 以螢光標定醣衍生物為受質進行glucose uptake assay P51
5.4 以glucose uptake assay 篩選hSGLT2抑制物之活性 P52
5.5 hSGLT2抑制物 IC50之計算 P52
第六章 實驗討論 P67
6.1 COS-7細胞與CHO-K1細胞培養討論 P67
6.2 建立hSGLTs質體 P67
6.3偵測hSGLTs在細胞的表達 P68
6.4細胞培養液之醣濃度對細胞表達SGLT之glucose uptake assay 影響 P69
6.5 溫度對hSGLTs之glucose uptake assay 影響 P70
6.6 以螢光標定醣衍生物為受質進行 glucose uptake assay P71
6.7 以輻射性標定醣衍生物為受質進行 glucose uptake assay P72
6.8以輻射性標定醣衍生物為受質進行 glucose uptake assay
篩選選擇性SGLT2抑制物 P73
6.9 SGLTs 蛋白功能性探討 P73
6.10 選擇性SGLT2抑制劑與T2DM之治療 P75
6.11 實驗限制與展望 P76
第七章 結論 P79
參考文獻 P80
dc.language.isozh-TW
dc.subjectDapagliflozinzh_TW
dc.subject第二型糖尿病zh_TW
dc.subject鈉離子依賴型葡萄糖運輸蛋白zh_TW
dc.subjectPhlorizinzh_TW
dc.subjectsodium dependent glucose cotransporteren
dc.subjectPhlorizinen
dc.subjectDapagliflozinen
dc.subjectType II diabetes (T2DM)en
dc.title建立篩選第二型糖尿病新治療藥物-選擇性SGLT2抑制劑-之細胞平台zh_TW
dc.titleEstablishment of a cell-based system for the screening of selective SGLT2 inhibitors as new therapeutic drugs for type II diabetesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孔繁璐(Fan-Lu Kung),梁碧慧(Pi-Hui Liang),余佳慧(Chia-Hui Yu)
dc.subject.keyword第二型糖尿病,鈉離子依賴型葡萄糖運輸蛋白,Phlorizin,Dapagliflozin,zh_TW
dc.subject.keywordType II diabetes (T2DM),sodium dependent glucose cotransporter,Dapagliflozin,Phlorizin,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
7.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved