請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4721完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮耀(Jung-Yaw Lin),呂紹俊(Shao-Chun Lu) | |
| dc.contributor.author | Chung-Yu Ku | en |
| dc.contributor.author | 辜琮祐 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:45:52Z | - |
| dc.date.available | 2016-09-25 | |
| dc.date.available | 2021-05-14T17:45:52Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-03 | |
| dc.identifier.citation | 1. Kaseb AO, Hanbali A, Cotant M, Hassan MM, Wollner I and Philip PA. Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature. Cancer. 2009; 115(21):4895-4906.
2. Moeini A, Cornellà H and Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer. 2012; 1(2):83-93. 3. Olsen SK, Jr RSB and Siegel AB. Hepatocellular carcinoma: review of current treatment with a focus on targeted molecular therapies. Therap Adv Gastroenterol. 2010; 3(1):55-66. 4. Semela D and Dufour J-Fo. Angiogenesis and hepatocellular carcinoma. J Hepatol. 2004; 41(5):864-880. 5. Villanueva A, Hernandez-Gea V and Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol. 2013; 10(1):34-42. 6. Romanque P, Piguet AC and Dufour JF. Targeting vessels to treat hepatocellular carcinoma. Clin Sci (Lond). 2008; 114(7):467-477. 7. Aucejo F, Kim R, Zein N, Quintini C, Uso TD, Lopez R, Eghtesad B, Fung J, Miller C and Yerian L. Vascular endothelial growth factor receptor 2 expression in non-tumorous cirrhotic liver is higher when hepatoma is beyond Milan criteria. Liver Transpl. 2009; 15(2):169-176. 8. Huang J, Zhang X, Tang Q, Zhang F, Li Y, Feng Z and Zhu J. Prognostic significance and potential therapeutic target of VEGFR2 in hepatocellular carcinoma. J Clin Pathol. 2011; 64(4):343-348. 9. Zhu AX, Duda DG, Sahani DV and Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011; 8(5):292-301. 10. Storch J and McDermott L. Structural and functional analysis of fatty acid-binding proteins. J Lipid Res. 2009; 50(Suppl):S126-131. 11. Woodford JK, Behnke WD and Schroeder F. Liver fatty acid binding protein enhances sterol transfer by membrane interaction. Mol Cell Biochem. 1995; 152(1):51-56. 12. Dong LH, Li H, Wang F, Li FQ, Zhou HY and Yang HJ. Expression of liver-type fatty acid-binding protein and vascular endothelial growth factor and their correlation in human hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 2007; 27(3):318-321. 13. Kawamura T, Kanno R, Fujii H and Suzuki T. Expression of liver-type fatty-acid-binding protein, fatty acid synthase and vascular endothelial growth factor in human lung carcinoma. Pathobiology. 2005; 72(5):233-240. 14. Hashimoto T, Kusakabe T, Watanabe K, Sugino T, Fukuda T, Nashimoto A, Honma K, Sato Y, Kimura H, Fujii H and Suzuki T. Liver-type fatty acid-binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma. Pathobiology. 2004; 71(3):115-122. 15. Sharaf RN, Butte AJ, Montgomery KD, Pai R, Dudley JT and Pasricha PJ. Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes. BMC Gastroenterol. 2011; 11:5. 16. Li H, Lu Q, Dong LH, Xue H, Zhou HY and Yang HJ. Expression of fatty acid binding protein in human breast cancer tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2007; 23(4):312-316. 17. Hammamieh R, Chakraborty N, Barmada M, Das R and Jett M. Expression patterns of fatty acid binding proteins in breast cancer cells. J Exp Ther Oncol. 2005; 5(2):133-143. 18. Wang B, Tao X, Huang CZ, Liu JF, Ye YB and Huang AM. Decreased expression of liver-type fatty acid-binding protein is associated with poor prognosis in hepatocellular carcinoma. Hepatogastroenterology. 2014; 61(133):1321-1326. 19. Li J, Dong L, Wei D, Wang X, Zhang S and Li H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 2014; 10(2):171-180. 20. Sonnino S and Prinetti A. Membrane domains and the 'lipid raft' concept. Curr Med Chem. 2013; 20(1):4-21. 21. Lingwood D and Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010; 327(5961):46-50. 22. Pike LJ. Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta. 2005; 1746(3):260-273. 23. Arcaro A, Aubert M, Hierro MEEd, Khanzada UK, Angelidou S, Tetley TD, Bittermann AG, Frame MC and Seckl MJ. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal. 2007; 19(5):1081-1092. 24. Chen X and Resh MD. Cholesterol depletion from the plasma membrane triggers ligand-independent activation of the epidermal growth factor receptor. J Biol Chem. 2002; 277(51):49631-49637. 25. Patwardhan P and Resh MD. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol. 2010; 30(17):4094-4107. 26. Jiang M, Yang J, Zhang C, Liu B, Chan K, Cao H and Lu A. Clinical studies with traditional Chinese medicine in the past decade and future research and development. Planta Med. 2010; 76(17):2048-2064. 27. Youns M, Hoheisel JD and Efferth T. Traditional Chinese medicines (TCMs) for molecular targeted therapies of tumours. Curr Drug Discov Technol. 2010; 7(1):37-45. 28. Zuo LL, Wang ZY, Fan ZL, Tian SQ and Liu JR. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int J Mol Sci. 2012; 13(5):5506-5518. 29. Zhu WJ, Yu DH, Zhao M, Lin MG, Lu Q, Wang QW, Guan YY, Li GX, Luan X, Yang YF, Qin XM, Fang C, Yang GH and Chen HZ. Antiangiogenic triterpenes isolated from Chinese herbal medicine Actinidia chinensis planch. Anticancer Agents Med Chem. 2013; 13(2):195-198. 30. Fujiwara Y, Takeya M and Komohara Y. A novel strategy for inducing the antitumor effects of triterpenoid compounds: blocking the protumoral functions of tumor-associated macrophages via STAT3 inhibition. Biomed Res Int. 2014; 2014:348539. 31. Fujiwara Y, Takaishi K, Nakao J, Ikeda T, Katabuchi H, Takeya M and Komohara Y. Corosolic acid enhances the antitumor effects of chemotherapy on epithelial ovarian cancer by inhibiting signal transducer and activator of transcription 3 signaling. Oncol Lett. 2013; 6(6):1619-1623. 32. Fujiwara Y, Komohara Y, Ikeda T and Takeya M. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci. 2011; 102(1):206-211. 33. Horlad H, Fujiwara Y, Takemura K, Ohnishi K, Ikeda T, Tsukamoto H, Mizuta H, Nishimura Y, Takeya M and Komohara Y. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 2013; 57(6):1046-1054. 34. Aranda E and Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009; 42(3):377-389. 35. Wang D, Stockard CR, Harkins L, Lott P, Salih C, Yuan K, Buchsbaum D, Hashim A, Zayzafoon M, Hardy R, Hameed O, Grizzle W and Siegal GP. Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem. 2008; 83(3-4):179-189. 36. Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H and Hengstschläger M. Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc. 2010; 5(6):1081-1095. 37. Kim KB, Lee JS and Ko YG. The isolation of detergent resistant lipid rafts for two dimensional electrophoresis. Methods Mol Biol. 2008; 424:413-422. 38. Chang YC, Tien SC, Tien HF, Zhang H, Bokoch GM and Chang ZF. p210Bcr-Abl desensitizes Cdc42 GTPase signaling for SDF-1a-directed migration in chromic myeloid leukemia cells. Oncogene. 2009; 28(46):4105-4115. 39. Tang SW, Yang TC, Lin WC, Chang WH, Wang CC, Lai MK and Lin JY. Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells. Carcinogenesis. 2011; 32(2):138-145. 40. Wang SC, Tang SW, Lam SH, Wang CC, Liu YH, Lin HY, Lee SS and Lin JY. Aqueous extract of Paeonia suffruticosa inhibits migration and metastasis of renal cell carcinoma cells via suppressing VEGFR-3 pathway. Evid Based Complement Alternat Med. 2012; 2012:409823. 41. Sackton KL, Dimova N, Zeng X, Tian W, Zhang M, Sackton TB, Meaders J, Pfaff KL, Sigoillot F, Yu H, Luo X and King RW. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature. 2014; 514:646-649. 42. Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, Braverman R, Papageorge AG and Lowy DR. E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases. Oncogene. 2010; 29(19):2760-2771. 43. Shum WW, Silva ND, Belleannée C, McKee M, Brown D and Breton S. Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol. 2011; 301(1):C31-43. 44. Tsubouchi T, Soza-Ried J, Brown K, Piccolo FM, Cantone I, Landeira D, Bagci H, Hochegger H, Merkenschlager M and Fisher AG. DNA synthesis is required for reprogramming mediated by stem cell fusion. Cell. 2013; 152(4):873-883. 45. Bennett SM, Jiang M and Imperiale MJ. Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol. 2013; 87(16):8843-8852. 46. Gottwein JM, Jensen SB, Li Y-P, Ghanem L, Scheel TKH, Serre SBN, Mikkelsen L and Bukh J. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a Viruses. Antimicrob Agents Chemother. 2013; 57(3):1291-1303. 47. Nevo J, Mai A, Tuomi S, Pellinen T, Pentikäinen OT, Heikkilä P, Lundin J, Joensuu H, Bono P and Ivaska J. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene. 2010; 29(49):6452-6463. 48. Takeuchi Y and Fukunaga K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J Neurochem. 2003; 85(4):1064-1074. 49. Shioda N, Takeuchi Y and Fukunaga K. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: proteins interacting with the third cytoplasmic loop of dopamine D2 and D3 receptors. J Pharmacol Sci. 2010; 114(1):25-31. 50. Storch J and Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem. 2010; 285(43):32679-32683. 51. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J and Huot J. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem. 2000; 275(14):10661-10672. 52. Koch S, Tugues S, Li X, Gualandi L and Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011; 437(2):169-183. 53. Claesson-Welsh L and Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013; 273(2):114-127. 54. Dodd KM, Yang J, Shen MH, Sampson JR and Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015; 34(17):2239-2250. 55. Chatterjee S, Heukamp LC, Siobal M, Schöttle J, Wieczorek C, Peifer M, Frasca D, Koker M, König K, Meder L, Rauh D, Buettner R, Wolf J, Brekken RA, Neumaier B, Christofori G, et al. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013; 123(4):1732-1740. 56. Segrelles C, Ruiz S, Santos M, Martínez-Palacio J, Lara MF and Paramio JM. Akt mediates an angiogenic switch in transformed keratinocytes. Carcinogenesis. 2004; 25(7):1137-1147. 57. Davies JK, Thumser AEA and Wilton DC. Binding of recombinant rat liver fatty acid-binding protein to small anionic phospholipid vesicles results in ligand release: a model for interfacial binding and fatty acid targeting. Biochemistry. 1999; 38(51):16932-16940. 58. Davies JK, Hagan RM and Wilton DC. Effect of charge reversal mutations on the ligand- and membrane-binding properties of liver fatty acid-binding protein. J Biol Chem. 2002; 277(50):48395-48402. 59. Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB and Schroeder F. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J. 2014; 281(9):2266-2283. 60. Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK, Landrock D, Kier AB and Schroeder F. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates. Biochemistry. 2013; 52(51):9347-9357. 61. Gao N, Qu X, Yan J, Huang Q, Yuan HY and Ouyang DS. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP. Mol Cell Biochem. 2010; 345(1-2):207-214. 62. Chiang AC and Joan Massagué. Molecular Basis of Metastasis. N Engl J Med. 2008; 359(26):2814-2823. 63. Zhang L, Wang JN, Tang JM, Kong X, Yang JY, Zheng F, Guo LY, Huang YZ, Zhang L, Tian L, Cao SF, Tuo CH, Guo HL and Chen SY. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep. 2012; 39(5):5085-5093. 64. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, Oliveira ACd, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008; 359(4):378-390. 65. Kim JH, Kim YH, Song GY, Kim DE, Jeong YJ, Liu KH, Chung YH and Oh S. Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β-catenin degradation. Food Chem Toxicol. 2014; 67:87-95. 66. Lee K, Jeong KW, Lee Y, Song JY, Kim MS, Lee GS and Kim Y. Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors. Eur J Med Chem. 2010; 45(11):5420-5427. 67. Ogasawara S, Yano H, Momosaki S, Nishida N, Takemoto Y, Kojiro S and Kojiro M. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep. 2005; 13(6):1043-1048. 68. Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS and Burczynski FJ. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology. 2005; 42(4):871-879. 69. Yan J, Gong Y, She YM, Wang G, Roberts MS and Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res. 2009; 50(12):2445-2454. 70. Furuhashi M and Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008; 7(6):489-503. 71. Simons K and Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000; 1(1):31-39. 72. Laurentiis Ad, Donovan L and Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J. 2007; 1:12-32. 73. Staubach S and Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011; 8(2):263-277. 74. Besnard P, Niot I, Poirier H, Clément L and Bernard A. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem. 2002; 239(1-2):139-147. 75. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB and Schroeder F. L-FABP directly interacts with PPARalpha in cultured primary hepatocytes. J Lipid Res. 2009; 50(8):1663-1675. 76. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB and Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem. 2010; 21(11):1015-1032. 77. Cohen AW, Combs TP, Scherer PE and Lisanti MP. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab. 2003; 285(6):E1151-1160. 78. Chen A, Tang Y, Davis V, Hsu FF, Kennedy SM, Song H, Turk J, Brunt EM, Newberry EP and Davidson NO. Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease. Hepatology. 2013; 57(6):2202-2212. 79. Brodsky SV, Mendelev N, Melamed M and Ramaswamy G. Vascular density and VEGF expression in hepatic lesions. J Gastrointestin Liver Dis. 2007; 16(4):373-377. 80. Heindryckx F and Gerwins P. Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 2015 Feb 27;7(2):165-76. 2015; 7(2):165-176. 81. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist. 2004; 9 Suppl 1:2-10. 82. Alkozai EM, Porte RJ, Adelmeijer J, Zanetto A, Simioni P, Senzolo M and Lisman T. Levels of angiogenic proteins in plasma and platelets are not different between patients with hepatitis B/C-related cirrhosis and patients with cirrhosis and hepatocellular carcinoma. Platelets. 2014:1-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4721 | - |
| dc.description.abstract | 國際上肝細胞癌在癌症發生率中排行第五,在癌症致死率中排行第三。肝細胞癌的生長及進展仰賴於新生血管的形成,而血管內皮生長因子(VEGF)在此過程中扮演非常重要的角色。
肝型脂肪酸結合蛋白(L-FABP)在肝細胞中大量表現,並已知可參與脂質代謝。L-FABP 過度表現已在許多癌症中被發現,但它在肝細胞癌中扮演的角色仍不清楚。本研究中,我們分析了L-FABP 與VEGF 在90 個HCC 患者中的關聯性。我們發現,L-FABP 在肝癌組織中與VEGF-A 呈現正相關性。此外,L-FABP 在異種移植小鼠模式中可顯著促進腫瘤生長及轉移。我們亦討論L-FABP 活性與腫瘤生成的關係:L-FABP 可與細胞膜上脂筏中的VEGFR2 結合,接著活化下游的Akt/mTOR/P70S6K/4EBP1 與Src/FAK/CDC42 路徑,這也使得VEGF-A 表現量增加,並促進血管新生與細胞移行之活性。我們的研究結果證實,L-FABP 可望成為治療肝癌的新目標。 在臨床上,抑制第二型血管內皮生長因子受體(VEGFR2)之活性已被建議作為治療HCC 的重要策略。本研究中,我們發現獼猴桃根部之化合物,科羅索酸(CA),對肝癌細胞表現出顯著的抗癌作用。研究指出, CA 可透過與VEGFR2 上ATP 結合口袋的交互作用,抑制VEGFR2 之活性。 CA 在Huh7 細胞實驗中可抑制性調控VEGFR2/Src/FAK/CDC42 路徑,減少絲狀肌動蛋白(F-actin)之形成,並降低細胞移行能力。在動物實驗中,CA 對腫瘤生長的有效抑制劑量為每隻小鼠給予5 毫克/公斤/天。我們也證實,CA 與蕾莎瓦(Sorafenib)在廣範圍濃度下具有協同效應。 本研究闡明了CA 抗肝癌的細胞分子機制,並建議CA 可作為治療侵襲性肝癌之抗癌藥或佐劑。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is the fifth most commonly occurring cancer and the third most common cause of cancer death worldwide. The progression of HCC relies
on the formation of new blood vessels, and VEGF is critical in this process. Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and its expression level was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also studied the mechanisms of L-FABP activity in tumorigenesis: L-FABP was found to be associated with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways. This resulted in up-regulation of VEGF-A expression accompanied by an increase in both angiogenic potential and migration activity. Taken together, our results suggest that L-FABP may be a potential target for HCC chemotherapy. Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis (藤梨), as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity of Huh7 cells in vitro. In an in vivo model, CA exhibites an effective dose (5 mg/kg/day) on tumor growth, and we further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, we elucidate the effects and molecular mechanism for CA on HCC cells and suggest that CA could serve as a therapeutic or adjuvant target for patients with aggressive HCC. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:45:52Z (GMT). No. of bitstreams: 1 ntu-104-D97442007-1.pdf: 24913983 bytes, checksum: e1aa9c96c7d2cadd20eb7e3d683e828b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abbreviations 1
中文摘要 3 Abstract 5 Introduction Hepatocellular carcinoma 7 Vascular endothelial growth factor and HCC 7 Liver fatty acid-binding protein (L-FABP) 8 Lipid rafts, receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases 9 Chinese herbal medicines and Actinidia chinensis 10 Corosolic acid (CA) 11 Materials and methods Part I Antibodies used for western blot analysis and chemical inhibitors 12 Tissue microarray construction and immunohistochemistry 12 Cell culture 13 Creation and culture of L-FABP overexpressed stable clones 13 Western blot analysis and immunoprecipitation 14 Cell migration assay 14 Angiogenesis activity assay 15 Short interference RNA (siRNA) and short hairpin RNA (shRNA) 16 Lipid rafts isolation 17 Confocal microscopy analysis 18 Small GTPase binding assay 18 Construction of human VEGF-A promoter 19 Luciferase reporter assay 19 Animals 20 Cloning of L-FABP mutants 21 Statistical analysis 21 Part II Plant extracts 22 HPLC analysis 22 Reagents 22 Cell culture 23 Cytotoxicity assay 23 Migration assay 24 Immunoprecipitation 24 Western blot analysis 25 Kinase activity assay 25 Rho GTPase activity assay 26 G-actin/F-actin activity assay 26 Confocal microscopy analysis 27 Animal model 27 Immunohistochemistry 29 Synergistic analysis 29 Molecular docking 29 SRB cell growth assay 30 Statistical analysis 30 Results Part I 1. Up-regulation of L-FABP expression in HCC tissues is correlated with VEGF-A overexpression 31 2. L-FABP induces VEGF-A expression and angiogenic potential in immortalized Hus and Huh7 cells 31 3. Association of L-FABP with VEGFR2 in membrane rafts 33 4. L-FABP increases VEGFR2/Src phosphorylation and cell migration by FAK/cdc42 pathway 34 5. L-FABP induced VEGF-A expression by Akt/mTOR/P70S6K/4EBP1 in translation level 35 6. L-FABP promoted tumor growth and metastasis in vivo 36 7. Cholesterol binding and membrane interacting properties are essential for L-FABP induced cell migration and angiogenesis 37 Part II 8. Corosolic acid significantly decreases the migration activity of Huh7 cells 38 9. Corosolic acid inhibits VEGFR2 kinase activity 39 10. Corosolic acid decreases cell motility by inhibiting VEGFR2/Src/FAK/cdc42 activity and actin rearrangement 40 11. Corosolic acid exhibits anti-tumor effect in vivo 41 12. Synergistic effects of corosolic acid and sorafenib on HCC cells 42 13. Corosolic acid interacts with the ATP-binding site of VEGFR2 kinase domain by molecular docking 43 14. Corosolic acid does not exhibit significant inhibitory effects on Huh7 cell 43 Discussion Part I Role of L-FABP in hepatocellular carcinoma 45 Part II Effects of corosolic acid on hepatocellular carcinoma 50 Summary 53 Figures and Figure legend Part I Figure 1. Correlation between the expression levels of L-FABP and VEGF-A 54 Figure 2. L-FABP expression is associated with VEGF-A expression of HCC cells 55 Figure 3. Expression level of VEGF-A is up-regulated in L-FABP stably expressed Hus cells 56 Figure 4. L-FABP promotes in vitro and in vivo angiogenic activity of Hus cells 57 Figure 5. Sequence aliment of L-FABP interacting domains 58 Figure 6. Co- immunoprecipitation of L-FABP and VEGFR2 in Hus/L-FABP cells 59 Figure 7. L-FABP associates with VEGFR2 in apical membrane of Hus/L-FABP cells 60 Figure 8. Localization of L-FABP and signaling molecules in lipid rafts 61 Figure 9. L-FABP increases the phosphorylation level of VEGFR2 in Hus cells 62 Figure 10. L-FABP increases the phosphorylation level of Src and FAK kinases in Hus cells 63 Figure 11. L-FABP promotes cdc42 activity of Hus cells 64 Figure 12. Analysis of migration activity of L-FABP stably expressed Hus cells 65 Figure 13. L-FABP up-regulates migration activity through VEGFR2/ Src pathway 66 Figure 14. L-FABP activates Akt/ mTOR/ P70S6K/ 4EBP1 signaling 67 Figure 15. HIF-1α significantly enriched in the nucleus of L-FABP overexpressed cells 68 Figure 16. Role of HIF-1α in VEGF-A transcriptional activity of L-FABP overexpressed cells 69 Figure 17. Post-transcriptional regulation of VEGF-A in L-FABP stably expressed Hus cells 70 Figure 18. L-FABP promotes tumor growth in vivo 71 Figure 19. L-FABP promotes in vivo metastasis by lung metastasis model 72 Figure 20. Effect of L-FABP mutants in VEGF-A expression 73 Figure 21. Effect of L-FABP mutants in migration activity 74 Figure 22. Cholesterol binding properties are essential for L-FABP induced cell migration and angiogenesis 75 Figure 23. Knockdown of L-FABP in Hus/L-FABP cells reversely decreased VEGF-A expression and migration activity 76 Figure 24. Knockdown of L-FABP in Huh7 cells down-regulates VEGF-A expression and migration activity 77 Figure 25. Reduction of L-FABP and VEGFR2 co-localization on membrane is observed in Huh7 L-FABP stably knockdown cells 79 Figure 26. Aberrant overexpression of L-FABP in HCC tissues (with cirrhosis) is associated with worse outcome 80 Part II Figure 27. Cytotoxicity and migration inhibitory effect of Actinidia chinensis on Huh7 cells 81 Figure 28. HPLC analysis of Actinidia chinensis 82 Figure 29. Migration activity of Huh7 cells is inhibited by corosolic acid without cytotoxicity 83 Figure 30. Corosolic acid reduces phosphorylation level of VEGFR2 84 Figure 31. Corosolic acid reduces VEGFR2 kinase activity 85 Figure 32. CA-induced inhibition of migration activity in Huh7 cells is VEGFR2 dependent 86 Figure 33. Corosolic acid down-regulates VEGFR2 downstream signals 87 Figure 34. Corosolic acid inhibits cdc42 activity 88 Figure 35. Effect of corosolic acid on actin rearrangement 89 Figure 36. Corosolic acid exhibits significant anti-tumor effects on Huh7 cells in vivo 90 Figure 37. Combinatorial effects of corosolic acid and sorafenib on migration activity of Huh7 cells 92 Figure 38. Combinatorial effects of corosolic acid and sorafenib on signaling molecules of Huh7 cells 93 Figure 39. Combinatorial effects of corosolic acid and sorafenib on Huh7 cells by 94 in vivo xenograft model Figure 40. Inhibitory effects of corosolic acid combined with sorafenib on Src and FAK kinases in vivo 95 Figure 41. Corosolic acid interacts with the ATP-binding site of VEGFR2 kinase domain by molecular docking analysis 96 Figure 42. Analysis of relative distance and surface charge distribution between corosolic acid and VEGFR2 ATP binding pocket 97 Figure 43. Corosolic acid inhibits growth of Huh7, HepG2, and Hep3B cells 98 Figure 44. Cytotoxicity and migration-inhibitory effects of corosolic acid on HepG2 cells 99 Figure 45. Cytotoxicity and migration-inhibitory effects of corosolic acid on Hep3B cells 100 Figure 46. Corosolic acid doesn’t exhibit significant inhibitory effect on invasion activity of Huh7 cells 101 Figure 47. Corosolic acid shows no inhibitory effect on NFκB signaling 102 Tables Table 1. Correlation between L-FABP and VEGF-A protein expression in tissue pairs from 90 HCC patients 103 Table 2. Clinical characteristics of the cases included in analyses of L-FABP protein expression evaluated by immunohistochemistry 103 Table 3. Association of L-FABP protein expression with clinical pathologic characteristics in patients with HCC 104 Supplementary data Table 1 105 Figure 1. Knockdown of VEGFR2 in Hus/L-FABP cells decreased the activation of down-stream signaling molecules 107 Figure 2. Prediction of the interaction models of L-FABP and VEGFR2 kinase domain 108 Figure 3. Amino acid substitution of L-FABP in present studies 109 References 110 | |
| dc.language.iso | en | |
| dc.subject | 科羅索酸 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 血管新生作用 | zh_TW |
| dc.subject | 第二型血管內皮生長因子受體 | zh_TW |
| dc.subject | 細胞移行 | zh_TW |
| dc.subject | 肝型脂肪酸結合蛋白 | zh_TW |
| dc.subject | 血管內皮生長因子 | zh_TW |
| dc.subject | vascular endothelial growth factor receptor-2 (VEGFR2) | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | angiogenesis | en |
| dc.subject | liver fatty acid-binding protein | en |
| dc.subject | vascular endothelial growth factor | en |
| dc.subject | corosolic acid | en |
| dc.subject | migration | en |
| dc.title | 肝細胞癌之相關研究:
一、肝型脂肪酸結合蛋白促進肝細胞癌之血管新生及細胞移行 二、科羅索酸針對VEGFR2/Src/FAK路徑抑制肝細胞癌之細胞移行 | zh_TW |
| dc.title | Studies on Hepatocellular Carcinoma (HCC):
I. Liver Fatty Acid-Binding Protein (L-FABP) Promotes Cellular Angiogenesis and Migration in Hepatocellular Carcinoma II. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 方剛(Kang Fang),李德章(Te-Chang Lee),李明學(Ming-Shyue Lee) | |
| dc.subject.keyword | 肝細胞癌,血管新生作用,肝型脂肪酸結合蛋白,血管內皮生長因子,科羅索酸,細胞移行,第二型血管內皮生長因子受體, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma,angiogenesis,liver fatty acid-binding protein,vascular endothelial growth factor,corosolic acid,migration,vascular endothelial growth factor receptor-2 (VEGFR2), | en |
| dc.relation.page | 123 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 24.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
