Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金必耀(Bih-Yaw Jin)
dc.contributor.authorQian-Rui Huangen
dc.contributor.author黃千睿zh_TW
dc.date.accessioned2021-06-15T05:49:20Z-
dc.date.available2010-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation[1] Carlos A. Murillo F. Albert Cotton and Richard A. Walton, editors. Multiple Bonds
Between Metal Atoms. Springer, third edition, 2005.
[2] J. F. Berry. Metal metal bonds in chains of three or more metal atoms: From
homometallic to heterometallic chains. In METAL-METAL BONDING, volume 136
of Structure and Bonding, pages 1–28. Springer, HEIDELBERGER PLATZ 3, D-
14197 BERLIN, GERMANY, 2010.
[3] Jordan Del Nero, Fabr’icio M. de Souza, and Rodrigo B. Capaz. Molecular electronics
devices: A short review. J. Comput. Theor. Nanosci., 7:503, 2010.
[4] I.P. Chen, M.D. Fu, W.H. Tseng, J.Y. Yu, S.H. Wu, C.J. Ku, C.H. Chen, and
S.M. Peng. Electron transport in molecular wire junctions. Angewandte Chemie-
International Edition, 45:5814, 2006.
[5] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press,
Cambridge, UK, 1995.
[6] S. Datta. Quantum Transport: Atom to Transistor. Cambridge University Press,
Cambridge, UK, 2005.
[7] R. Hoffmann. An extended h‥uckel theory. i. hydrocarbons. J. Chem. Phys., 39(6):
1397, 1963.
[8] R. Hoffmann. Extended h‥uckel theory .2. sigma orbitals in azines. J. Chem. Phys.,
40(9):2745, 1964.
[9] R. Hoffmann. Extended h‥uckel theory .3. compounds of boron+nitrogen. J. Chem.
Phys., 40(9):2474, 1964.
[10] R. Hoffmann. Extended h‥uckel theory .4. carbonium ions. J. Chem. Phys., 40(9):
2480, 1964.
[11] H. Morkoc. Advanced Semiconductors and Organic Nano-techniques. Academic,
2003.
[12] F. Zahid, E. Polizzi M. Paulsson, A. W. Ghosh, L. Siddiqui, and S. Datta. A
self-consistent transport model for molecular conduction based on extended h‥uckel
theory with full three-dimensional electrostatics. J. Chem. Phys., 123(6):064707,
Aug 2005.
[13] Supriyo Datta, Weidong Tian, Seunghun Hong, R. Reifenberger, Jason I. Henderson,
and Clifford P. Kubiak. Current-voltage characteristics of self-assembled monolayers
by scanning tunneling microscopy. Phys. Rev. Lett., 79:2530, 1997.
[14] Yongqiang Xue, Supriyo Datta, Seunghun Hong, R. Reifenberger, Jason I. Henderson,
and Clifford P. Kubiak. Negative differential resistance in the scanningtunneling
spectroscopy of organic molecules. Phys. Rev. B, 59:7852, 1999.
[15] F. Zahid, A. W. Ghosh, M. Paulsson, E. Polizzi, and S. Datta. Charging-induced
asymmetry in molecular conductors. Phys. Rev. B, 70:245317, 2004.
[16] Vihar P. Georgiev and John E. McGrady. Efficient spin filtering through cobalt-based
extended metal atom chains. Inorganic Chemistry, pages –, May 2010.
[17] Liang-Yan Hsu, Qian-Rui Huang, and Bih-Yaw Jin. Charge transport through a
single molecular wire based on linear multimetal complexes: A non-equilibrium green
!|s function approach. J. Phys. Chem. C, 112:10538, 2008.
[18] L. Y. Hsu and B. Y. Jin. Bandwidth, intensity and lineshape of the transmission
spectrum in the single molecular junction. Chem. Phys. Lett., 457:279, 2008.
[19] Yongqiang Xue and Mark A. Ratner. Microscopic study of electrical transport
through individual molecules with metallic contacts. i. band lineup, voltage drop,
and high-field transport. Phys. Rev. B, 68:115406, 2003.
[20] Ranjit Pati, Mike McClain, and Anirban Bandyopadhyay. Origin of negative differential
resistance in a strongly coupled single molecule-metal junction device. Phys.
Rev. Lett., 100:246801, 2008.
[21] J. A. Pople, D. P. Santry, and G. A. Segal. Approximate self-consistent molecular
orbital theory. i. invariant procedures. J. Chem. Phys., 43:S129, 1965.
[22] J. A. Pople and G. A. Segal. Approximate self-consistent molecular orbital theory. ii.
calculations with complete neglect of differential overlap. J. Chem. Phys., 43:S136,
1965.
[23] Shousuke Nakanishi and Masaru Tsukada. Quantum loop current in a c60 molecular
bridge. Phys. Rev. Lett., 87(12):126801, Aug 2001.
[24] Yanyang Zhang, Jiang-Ping Hu, B. A. Bernevig, X. R. Wang, X. C. Xie, and W. M.
Liu. Quantum blockade and loop currents in graphene with topological defects.
Phys. Rev. B, 78(15):155413, Oct 2008.
[25] Te-Wei Tsai, Qian-Rui Huang, Shie-Ming Peng, and Bih-Yaw Jin. Smallest electrical
wire based on extended metal-atom chains. J. Phys. Chem. C, 114:3641, 2010.
[26] A. Aviram and M.A. Ratner. Molecular rectifier. Chemical Physics Letters, 29:277,
1953.
[27] J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta,
M. Rinkoski, J.P. Sethna, H.D. Abru‥na, P.L.McEuen, and D.C. Ralph. Coulomb
blockade and the kondo effects in single-atom transistors. Nature, 417:722, 2002.
[28] W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park. Kondo resonance in
a single-molecule transistor. Nature, 417:725, 2002.
[29] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour. Conductance of
molecular junction. Science, 278:252, 1997.
[30] H. D. Sikes, J. F. Smalley, S. P. Dudek, A. R. Cook, M. D. Newton, C. E. D. Chidsey,
and S. W. Feldberg. Rapid electron tunneling through oligophenylenevinylene
bridges. Science, 291:1519, 2001.
[31] Shu-Yi Lin, I-Wen Peter Chen, Chun hsien Chen, Ming-Hsun Hsieh, Chen-Yu Yeh,
Tzu-Wei Lin, Yu-Hua Chen, and Shie-Ming Peng. Effect of metal-metal interactions
on electron transfer: an stm study of one-dimensional metal string complexes. J.
Phys. Chem. B, 108:959, 2004.
[32] Dong-Hun Chae, John F. Berry, Suyong Jung, F. Albert Cotton, Carlos A. Murillo,
and Zhen Yao. Vibrational excitations in single trimetal-molecule transistors. Nano
Letters, 6(2):165–168, February 2006.
[33] G. A. Lamdrum and W. V. Glassey. bind (ver 3.0). bind is distributed as part of
the YAeHMOP, extended H‥uckel molecular orbital package, and is freely available
at http://sourceforge.net/projects/yaehmop/.
[34] J.H. Ammeter, H.-B. B‥urgi, J.C. Thibeault, and R. Hoffmann. Counterintuitive
orbital mixing in semiemperical and ab initio molecular orbital calculation. Journal
of the American Chemical Society, 100:3686, 1978.
[35] H. Sellers, A. Ulman, Y. Shnidman., and J. E. Eilers. Structure and binding of alkanethiolates
on gold and silver surfaces-implications for self-assembled monolayers. J.
Am. Chem. Soc., 115:9389, 1993.
[36] Eldon G. Emberly and George Kirczenow. Theoretical study of electrical conduction
through a molecule connected to metallic nanocontacts. Phys. Rev. B, 58(16):10911–
10920, Oct 1998.
[37] Gemma C. Solomon, David Q. Andrews, Thorsten Hansen, Randall H. Goldsmith,
Michael R. Wasielewski, Richard P. Van Duyne, and Mark A. Ratner. Understanding
quantum interference in coherent molecular conduction. JOURNAL OF CHEMICAL
PHYSICS, 129(5), AUG 7 2008.
[38] Gemma C. Solomon, David Q. Andrews, Richard R. Van Duyne, and Mark A.
Ratner. Electron Transport through Conjugated Molecules: When the pi System
Only Tells Part of the Story. CHEMPHYSCHEM, 10(1):257–264, JAN 12 2009.
[39] Gemma C. Solomon, David Q. Andrews, Randall H. Goldsmith, Thorsten Hansen,
Michael R. Wasielewski, Richard P. Van Duyne, and Mark A. Ratner. Quantum Interference
in Acyclic Systems: Conductance of Cross-Conjugated Molecules. JOURNAL
OF THE AMERICAN CHEMICAL SOCIETY, 130(51):17301–17308, DEC 24
2008.
[40] Thorsten Hansen, Gemma C. Solomon, David Q. Andrews, and Mark A. Ratner.
Interfering pathways in benzene: An analytical treatment. JOURNAL OF CHEMICAL
PHYSICS, 131(19), NOV 21 2009.
[41] Carmen Herrmann, Gemma C. Solomon, and Mark A. Ratner. Organic Radicals As
Spin Filters. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 132(11):
3682+, MAR 24 2010.
[42] J. M. Siohel and M. A. Whitehead. Atomic parameters for semi-empirical scf-lcao-mo
calculations. Theoret. Chim. Acta, 7:32–40, 1967.
[43] O. V. Sizova, N. V. Ivanova, and V. I. Baranovskii. One-center parameters of the
cndo and indo methods for atoms of transition elements of series i and ii. J. Str.
Chem, 24:618, 1984.
[44] Michael C. B‥ohm and Rolf Gleiter. A cndo/indo molecular orbital formalism for the
elements h to br. theory. Theoret. Chim. Acta, 59:127, 1981.
[45] Tomoaki Tanase. Recent development of linearly ordered multinuclear transitionmetal
complexes. Bull. Chem. Soc. Jpn., 75:1407, 2002.
[46] E.C. Yang, M.C. Cheng, M.S. Tsai, and S.M. Peng. Structure of a linear unsymmetrical
trinuclear cobalt(ii) complex with a localized CoII −CoII bond: dichlorotetrakis
[μ3-bis(2-pyridyl)amido]tricobalt(ii). Journal of the Chemical Society, Chemical
Communications, 20:2377, 1994.
[47] R. Cl’erac, F.A. Cotton, L.M. Daniels, K.R Dunbar, C.A. Murillo, and X. Wang.
Tuning the metal-to-metal bonds in the linear tricobalt compound: Bond-strength
and spin-state isomers. Inorganic Chemistry, 40:1256, 2001.
[48] Istv’an Mayer. Charge, bond order and valence in the ab initio scf the. Chem, 97:270,
1983.
[49] Istv’an Mayer. Bond orders and valences in the scf theory: a comment. Theoret.
Chim. Acta, 67:315, 1985.
[50] Istv’an Mayer. Bond order and valence indices: A personal account. J. Comput.
Chem., 28:204, 2007.
[51] J. M. Tour. Molecular electronics. synthesis and testing of components. Acc. Chem.
Res., 33(11):791–804, 2000.
[52] Arieh Aviram and Mark A. Ratner. Molecular rectifiers. Chemical Physics Letters,
29(2):277 – 283, 1974.
[53] A. S. Martin, J. R. Sambles, and G. J. Ashwell. Molecular rectifier. Phys. Rev. Lett.,
70(2):218–221, Jan 1993.
[54] M. L. Chabinyc, X. Chen, R. E. Holmlin, H. Jacobs, H. Skulason, C. D. Frisbie,
V. Mujica, M. A. Ratner, M. A. Rampi, and G. M. Whitesides. Molecular rectification
in a metal-insulator-metal junction based on self-assembled monolayers. J. Am.
Chem. Soc., 124:11730–11736, 2002.
[55] G. J. Ashwell, W. D. Tyrrell, and A. J. Whittam. Molecular rectification: selfassembled
monolayers of a donor-(π-bridge)-acceptor chromophore connected via
truncated au-s-(ch2)3. J. Mater. Chem., 13:2855–2857, 2003.
[56] L. H. Yu and D. Natelson. The kondo effect in c60 single-molecule transistors. Nano
Lett., 4:79–83, 2004.
[57] T. Albrecht, A. Guckian, Ulstrup J., and J. G. Vos. Transistor-like behavior of
transition metal complexes. Nano Letters, 5:1451–1455, 2005.
[58] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour. Large on-off ratios and
negative differential resistance in a molecular electronic device. Science, 286(5444):
1550–1552, 1999.
[59] M Galperin, MA Ratner, and A Nitzan. Hysteresis, switching, and negative differential
resistance in molecular junctions: A polaron model. Nano Lett., 5(1):125–130,
Jan 2005.
[60] NP Guisinger, ME Greene, R Basu, AS Baluch, and MC Hersam. Room temperature
negative differential resistance through individual organic molecules on silicon
surfaces. Nano Lett., 4(1):55–59, Jan 2004.
[61] J Cornil, Y. Karzazi, and J. L. Bredas. Negative differential resistance in phenylene
ethynylene oligomers. J. Am. Chem. Soc., 124(14):3516–3517, Mar 2002.
[62] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. v. L‥ohneysen.
Driving current through single organic molecules. Phys. Rev. Lett., 88(17):176804,
Apr 2002.
[63] J. Heurich, J. C. Cuevas, W. Wenzel, and G. Sch‥on. Electrical transport through
single-molecule junctions: From molecular orbitals to conduction channels. Phys.
Rev. Lett., 88(25):256803, Jun 2002.
[64] Zbigniew L. Gasyna, Gustavo M. Morales, Arturo Sanchez, and Luping Yu. Asymmetric
current-voltage characteristics of molecular junctions containing bipolar
molecules. Chemical Physics Letters, 417(4-6):401 – 405, 2006.
[65] H. Hao, X. Q. Shi, and Z. Zeng. Theoretical demonstration of symmetric i-v curves
in asymmetric molecular junction of monothiolate alkane. Microelectron. J., 40(4-5):
773–775, 2009.
[66] V. Mujica, M. Kemp, and M. A. Ratner. Electron conduction in molecular wires. ii.
application to scanning tunneling microscopy. J. Chem. Phys., 101:6856, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47160-
dc.description.abstract本篇論文主要是探討三核金屬串的量子輸送現象,內容主要包含兩部份,第一部分是利用非平衡格林函數法和拓展的休克爾模型(extended Huckel model)探討三核線型金屬串(M3(μ3-dpa)4(NCS)2 (dpa=2,2'-dipyridylamide), M = Co, Ni, 或 Cr) 的導電性質,指出了不同的金屬串中的主要導電通道;同時釐清了導電的主要通道在於中央的金屬原子,而配位基具有調控導電度大小的能力。最後透過一個假想實驗預測不同金屬的三核金屬串的導電度的趨勢,建立了導電度與鍵級(Bond Order)的連結。第二部份則是利用非平衡格林函數法和一階微擾理論探討電壓對單分子接點的穿透函數的影響,其中對稱的系統和不對稱的系統中的影響有明顯不同的結果。最後,我們對一個簡單模型系統和兩個真實分子系統進行計算,釐清這些系統中電壓對穿透函數的影響。zh_TW
dc.description.abstractThis master thesis is partitioned in three chapters: “Introduction”, “Charge transport through individual trinuclear EMACs” and “Bias dependence of intensities in the transmission spectra of single-molecule junctions”.
Charge Transport Through Individual Trinuclear EMACs
Charge Transport properties of single-molecule junction based on trinuclear extended metal atom chains (EMACs) are investigated using the Non-Equilibrium Green’s Function method and the extended Huckel theory. We identify the major conducting orbitals of the trichromium, tricobalt and trinickel complexes, which directly explain the trend in the single-molecule conductance. While the metal cores allow almost all of the current flow through, the conjugated ligands has the function to tune the conducting ability of the EMACs instead of provides another conducting pathways. Moreover, we have proposed a molecular orbital interpretation to the periodic trend in the single-molecule conductance of EMACs with the first-row transition metal cores, which illustrate the strong connections among the conductance, the orbital energies, the atomic number and the metal-metal bond order.
Bias Dependence of Intensities in the Transmission Spectra of
Single-molecule Junctions
The modification of transport properties in single-molecule junctions in the region of finite bias is investigated by the Non-Equilibrium Green’s Function (NEGF) method and the first-order perturbation theory. Combining these two theories, we derive a semiquantitative formula in terms of molecular orbital coefficients to estimate the variation of transmission functions under the bias. The influence of bias for the symmetric and nonsymmetric junctions on the intensities of transmission functions is clarified. Finally, we applied this analysis to the following systems, a Huckel model system and two real single-molecule junctions, which consist of naphthalenedithiol and azulenedithiol, demonstrating the bias-induced change of the intensities of transmission functions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:49:20Z (GMT). No. of bitstreams: 1
ntu-99-R97223127-1.pdf: 958474 bytes, checksum: 3e72f7a167d3a282934cb33fc5c76696 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 Introduction 17
1.1 Charge Transport Through Individual Trinuclear EMACs 17
1.2 Bias dependence of intensities in the transmission spectra of single-molecule junctions 20
2 Charge Transport Through Individual Trinuclear EMACs 23
2.1 Zero-Bias Conductance and Transmission Functions 25
2.2 I-V Characteristics 31
2.3 Local Current Analysis 35
2.4 The Contribution of Ligands to the Charge Transport Properties 39
2.5 Geometric Dependence: Modification on Metal-Metal Bond Length 42
2.6 Trends of Conductivity among EMACs with Different Metal Core 46
2.7 Conclusion 51
3 Bias dependence of intensities in the transmission spectra of single-molecule junctions 53
3.1 Introduction 53
3.2 Transmission function under bias 54
3.3 A simple model system 58
3.4 Real molecule junctions: naphthalenedithiol and azulenedithiol 59
3.5 Conclusion 66
Appendix 69
A Achieving Convergence of Self-Consistent Field calculation in Huckel-IV 3.0 69
B Assignment of orbitals in MO Diagram 75
dc.language.isoen
dc.subject鍵級zh_TW
dc.subject量子輸送zh_TW
dc.subject分子電子學zh_TW
dc.subject金屬串zh_TW
dc.subject單分子導電zh_TW
dc.subjectQuantum Transporten
dc.subjectBond Orderen
dc.subjectSingle-molecule conductionen
dc.subjectEMACsen
dc.subjectMolecular Electronicen
dc.title三核金屬串的量子輸送現象之理論研究zh_TW
dc.titleTheoretical Studies on Quantum Transport Through Individual Extended Metal Atom Chains with Three Metal Atomsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭旭明(Shie-Ming Peng),陳俊顯(Chun-Hsien Chen)
dc.subject.keyword量子輸送,分子電子學,金屬串,單分子導電,鍵級,zh_TW
dc.subject.keywordQuantum Transport,Molecular Electronic,EMACs,Single-molecule conduction,Bond Order,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
936.01 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved