請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47136
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃武良(Wuu-Liang Huang) | |
dc.contributor.author | Wen-Yu Tsai | en |
dc.contributor.author | 蔡文瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T05:48:37Z | - |
dc.date.available | 2013-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | Aali, J., Rahimpour-Bonab, H., Kamali, M.R., 2006. Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering 50, 161–175.
ACS (American Chemical Society), 1999. Chemistry of renewable fuels and chemicals; role of water in organic reactions. 217th American Chemical Society National Meeting, Division of Fuel Chemistry 21–25 March 1999, Anaheim, CA; Preprints of Symposia 44 (2). Alexeyev, F.A., Lebedev, V.S., Krylova, T.A., Ovsyannikov, V.M., Grachev, A.V., 1967. Carbon Isotopic Composition of Natural Hydrocarbons and the Problems of their Origin. ONTI VNIYaGG, Moscow, Russia. Alsaab, D., Elie, M., Izart, A., Sachsenhofer, R.F., Privalov, V.A., Suarez-Ruiz, I., Martinez, L., 2008. Comparison of hydrocarbon gases (C1–C5) production from Carboniferous Donets (Ukraine) and Cretaceous Sabinas (Mexico) coals. International Journal of Coal Geology 74, 154–162. Andresen, B., Throndsen, T., Ra˚ heim, A., Bolstad, J., 1995. A comparison of pyrolysis products with models for natural gas generation. Chemical Geology 126, 261–280. Behar, F., Kressmann, S., Rudkiewicz, J. L., Vandenbrouke, M., 1992. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking. Organic Geochemistry 19, 173–189. Behar, F., Lewan, M.D., Lorant, F., Vandenbroucke, M., 2003. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Organic Geochemistry 34, 575–600. Behar, F., Vandenbrouke, M., Tang, Y., Marquis, F., Espitalié, J., 1997. Thermal cracking of kerogen in open and closed system: determination of kinetic parameters and stoechiometric coefficients for oil and gas generation. Organic Geochemistry 26, 321–339. Behar, F., Vandenbroucke, M., Teermann, S.C., Hatcher, P.G., Leblond, C., Lerat, O., 1995. Experimental simulation of gas generation from coals and marine kerogen. Chemical Geology 126, 247–260. Bernard, B.B., Brooks, J.M., Sackett, W.M., 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res. 83, 4053–4061. Berner, U., Faber, E., Scheeder, G., Panten, D., 1995. Primary cracking of algal and land plant kerogens: kinetic models of isotope variations in methane, ethane and propane. Chem. Geol. 126, 233–245. Berner, U., Faber, E., 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Org. Geochem. 24, 947–955. Botneva, T.A., Mu‥ ller, P., Maas, I., 1969. On carbon isotopic composition of oils and their fractions. Geologiya Nefti i gaza 7, 33–39 (in Russian). Boreham, C.J., Hope, J.M., Hartung-Kagi, B., 2001. Understanding source, distribution and preservation of Australian natural gas: a geochemical perspective. The Australian Production and Petroleum Exploration Association Journal 41 (1), 523–547. Boreham, C.J., Edwards, D.S., 2007. Effect of source, maturity and biodegradation on the D/H ratio of Australian natural gas. In: The 23rd International Meeting on Organic Geochemistry, Torquay, England, 9th–14th September 2007. Book of Abstracts, 1085–1086. Boreham, C.J., Edwards, D.S., 2008. Abundance and carbon isotopic composition of neo-pentane. Organic Geochemistry 39 (5), 550–566. Boreham, C.J., 2008. Carbon and hydrogen isotopes of neo-pentane for biodegraded natural gas correlation. Organic Geochemistry 39, 1483–1486 Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbondioxide– graphite–methane–hydrogen–water vapor. Geochimica et Cosmochimica Acta 33, 49–64. Chang, Y.J., Huang, W.L., Hsu, A., Huang, S.Y., 2008. Characterization of kerogens and coals using fluorescence measured in situ at elevated temperatures. Intern. J. Coal Geol. 75(2), 63-75. Chang, Y.J., Huang, W.L., 2008. Simulation of the fluorescence evolution of ”live”oils from kerogens in a diamond anvil cell: Application to inclusion oils in terms of maturity and source. Geochimica et Cosmochimica Acta 72, 3771–3787. Chang, Y.J., 2009. Sourcee dependence of fluorescence characteristics and aromatic, biomarker maturity parameters evaluated by artificial maturation. Ph.D. thesis, University of Taiwan. Cheng, A.L., Huang, W.L., 2004. Selective adsorption of hydrocarbon gases on clays and organic matter. Organic Geochemistry 35, 413–423. Cheng, A.L., 2001. Adsorption and diffusion of natural gas during migration: an experimental study. Master thesis, University of Taiwan. Connan, J., Cassou, A.M., 1980. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 44, 1-23. Chung, H.M., Sackett, W.M., 1980. Carbon isotope effects during pyrolytic formation of early methane from carbonaceous materials. In: A.G. Douglas and J.R. Maxwell {Editors), Advances in Organic Geochemistry, 1979. Pergamon, Oxford, 705-710. Chung, H.M., Gormly, J.R., Squires, R.M., 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chemical Geology 71, 97 – 103 Colombo, U., Gazzarrini, F., Gonfiantini, R., Tongiorgi, E., Caflisch, L. 1968. Carbon isotopic study of hydrocarbons in Italian natural gases. In: 4th International Meet, Amsterdam, Organic Geochemistry Special Publication, 156–158. Coplen, T.B., 1996. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta 60, 3359–3360. Dai, J., Li, J., Luo, X., Zhang, W., Hu, G., Ma, C., Guo, J., Ge, S., 2005. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Organic Geochemistry 36, 1617–1635. Darling, W.G., 1998. Hydrothermal hydrocarbon gases: 2, Application in the East African Rift System. Applied Geochemistry 13( 7), 825±840. Durand, B., Nicaise, G., 1980. Procedure for kerogen isolation. In Kerogen: Isolated Organic Matter for Sedimentary Rocks (ed. B. Durand). Editions Technip, Paris, 35-52. Eckelman, W.R., Broecker, W.S., Whitlock, D.W., Allsup, J.R., 1962. Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils. American Association of Petroleum Geologists Bulletin 46, 699–704. Faber, E. and Stahl, W., 1984. Geochemical surface exploration of hydrocarbons in the North Sea. Am. Assoc. Petrol. Geol. Bull, 67, 2225-2238. Frank, D.J., Sackett, W.M., 1969. Kinetic effects in the thermal cracking of neopentane. Geochimica et Cosmochimica Acta 33, 811. Frank, D.J., Gormly, J.R., Sackett, W.M., 1974. Revaluation of carbon-isotope compositions of natural methanes. Bull. Am. Assoc. Pet. Geol. 58, 2319-2325. Freund, H., Close, J.A., Otten, G.A., 1993. Effect of pressure on the kinetics of kerogen pyrolysis. Energy and Fuels 7, 1088–1094. Galimov, E.M., 1967. 13C enrichment of methane during passage through the rocks. Geochemistry International 4, 1180–1181. Galimov, E.M., 1968. Geochemistry of Carbon Stable Isotopes. Nedra, Moscow, Russia, 224. Galimov, E.M., 1969a. Isotopic composition of carbon in gases of the crust. Geological Review 11, 1092–1104. Galimov, E.M., 1972. Method of isotopic bond numbers. Application in biochemistry and geochemistry. Abstract. 4th All-Union Symposium on the Application of Stable Isotopes in Geochemistry. GEOKHI, Moscow, Russia, 3–5. Galimov, E.M., 1973. Carbon Isotopes in Oil and Gas Geology. Nedra Press, Moscow, NASA Translation, F-682, Washington, D.C., 1975, 385. Galimov, E.M., 2006. Isotope organic geochemistry, Organic Geochemistry 37, 1200–1262. Gu‥rgey, K., Paul Philp, R., Clayton, C., Emirog˘lu, H., Siyako, M., 2005. Geochemical and isotopic approach to maturity/source/mixing estimations for natural gas and associated condensates in the Thrace Basin, NW Turkey. Applied Geochemistry 20, 2017–2037. Head, I.M., Jones, D.M., Larter, S.R., 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352. He′roux, Y., Chagnon, A., Bertrand, R., 1979. Compilation and correlation of major thermal maturation indicators. American Association of Petroleum Geologists Bulletin 63, 2128–2144. Hoefs, J. and Frey, M., 1976. The lsotoplc composition of carbonaceous matter in metamorphic profile from the Swiss Alps. Geochim. Cosmochim. Acta 40, 945-951. Hoering, T.C., 1984. Thermal reactions of kerogen with added water, heavy water and pure organic substances. Organic Geochemistry 5, 267–278. Huang, W.L., 1996. A new pyrolysis technique using a diamond cell: in situ visualization of kerogen transformation. Organic Geochemistry 24, 95-107. Hutton, A.C., 1995. Organic petrography of oil shale. In Composition, Geochemistry and Conversion of Oil Shales (ed. C. Snape). NATO ASI Series C: Mathematical and Physical Sciences 455. Igari, S., 1996. Relation between hydrocarbon ratios of Japanese natural gases. Chikyukagaku 30, 47–54 (in Japanese with English abstract) Igari, S., 1999a. Carbon isotopic ratios of methane, ethane and propane in natural gases from Niigata and Akita in Japan: Factors affecting the parameters. Geochemical Journal 33, 127–132. Igari, S., 1999b. Origin of unusual hydrocarbon ratios in Japan: compositional change due to bacterial degradation. Bull. Geol. Surv. Japan 50, 377–381 (in Japanese with English abstract) Igari, S., 2001. Organic geochemical study of natural gases from major gas fields in Japan. Bull. Geol. Surv. Japan 52, 445–469. Igari, S., Maekawa, T., Suzuki, Y., 2007. Pentane and hexane isomers in natural gases from oil and gas fields in Akita, Niigata and Hokkaido, Japan: Determination factor in their isomer ratios. Geochemical Journal 41, 57-63. Inan, S., Yalcin, M.N., Mann, U., 1998. Expulsion of oil from petroleum source rocks: inferences from pyrolysis of samples of unconventional grain size. Organic Geochemistry 29, 45–61. James, A.T., 1983. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. American Association of Petoleum Geologists Bulletin 67, 1176-1191. James, A.T. Burns, B.J., 1984. Microbial alteration of subsurface natural gas accumulations. American Association of Petoleum Geologists Bulletin 68, 957-960. James, A.T., 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. American Association of Petroleum Geologists Bulletin 74, 1441–1458. Jariv, D. M., Hill, R. J., Ruble, T.E., Pollastro, R.M., 2007. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. American Association of Petoleum Geologists Bulletin 91, 475-499. Jenden, P.D., Kaplan, I.R., 1986. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: implications for the origin of natural gas. Appl. Geochem. 1, 631–646. Jenden, P.D., Newell, K.D., Kaplan, I.R., Watney, W.L., 1988. Composition and stable isotope geochemistry of natural gas from Kansas, Midcontinent, U.S.A. In: Schoell, M. (Ed.), Origin of Methane in the Earth. Chemical Geology 71, 117–147. Junk, T., Catallo, W.J., 1997. Hydrogen isotope exchange reactions involving C-H (D, T) bonds. Chemical Society Reviews 26, 401–406. Katz, B. J., Narimanov, A., Huseinzadeh, R., 2002. Significance of microbial processes in gases of the South Caspian basin. Marine and Petroleum Geology 19, 783–796. Kniemeyer, O., Musat, F., Sievert, S.M., Knittel, K., Wilkes, H., Blumenberg, M., Michaelis, W., Classen, A., Bolm, C., Joye, B., Widdel, F., 2007. Anaerobic oxidation of short-chain hydrocarbons by marine sulphatereducing bacteria. Nature 449, 898–901. Kvenvolden, K.A., Squires, R.M., 1967. Carbon isotopic composition of crude oils from Ellenburger group (Lower Ordovician), Permian basin West Texas and Eastern New Mexico. American Association of Petroleum Geologists Bulletin 5, 1293–1303. Landais, P., Michels, R., Poty, B., 1989. Pyrolysis of organic matter in cold-seal pressure autoclaves. Experimental approach and applications. Journ. of analy. and appl. pyrolysis 16, 103-115. Landais, P.L., Michels, R., Elie, M., 1994. Are time and temperature the only constraints to the simulation of organic matter maturation? Organic Geochemistry 22, 617–630. Landais P. and Monthioux M., 1988. Closed system pyrolysis: an efficient technique for simulating natural coal maturation. Fuel Proc. Tech. 20, 123- 132. Landais, P., Monthioux, M. and Poty, B., 1990. Simulation of natural coalification by high-pressure pyrolysis. International Journal of Coal Geology, 16, 230-234 Landergren, S., 1955. A note on the Isotope ratio 12C/13C in metamorphosed alum shale. Geochim. Cosmochim. Acta 7, 240-241. Larter, S., di Primio, R., 2005. Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Organic Geochemistry 36, 299–310. Leif, R.N., Simoneit, B.R.T., 2000. The role of alkenes produced during hydrous pyrolysis of a shale. Organic Geochemistry 31, 1189–1208. Lewan, M.D., 1980. Geochemistry of vanadium and nickel in organic matter of sedimentary rocks. Ph.D Dissertation, University of Cincinnati. Lewan, M.D., 1983. Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale. Geochimica. Cosmochimica. Acta 47, 1471-1479. Lewan, M.D., 1993. Laboratory simulation of petroleum formation. Hydrous pyrolysis. In: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry. Plenum Press, New York, pp. 419–442. Lewan, M.D., 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta 61, 3691–3723. Lewan, M.D., 1998. Sulphur-radical control on petroleum formation rates. Nature 391, 164–166. Lewan, M.D., Ruble T.E., 2002. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Organic Geochemistry 33, 1457-1475. Lewan, M.D., Kotarba, M.J., Wie˛cław, D., Piestrzyn′ ski, A., 2008. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis. Geochimica et Cosmochimica Acta 72, 4069–4093. Lis, G., Schimmelmann, A., Mastalerz, M., 2006. D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity. Organic Geochemistry 37, 342–353. Lorant, F., Prinzhofer, A., Behar, F., Huc, A.Y., 1998. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chem. Geol. 147, 249–264. Lorenson, T.D., Claypool, G.E., Dougherty, J.A., 2008. Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise. Marine and Petroleum Geology 25, 873–883. Mango, F.D., 1997b. The light hydrocarbons in petroleum; a critical review. Organic Geochemistry 26, 417–440. Mango, F.D., 2000. The origin of light hydrocarbons. Geochimica et Cosmochimica Acta 64, 1265–1277. Mango, F.D., 2001. Methane concentrations in natural gas; the genetic implications. Organic Geochemistry 32, 1283–1287. May, F., Freund, W., Mu‥ ller, P., 1968. Modellversuche u‥ber Isotopenfraktionerung von Erdgaskomponenten wa‥hrend der Migration. Zeitschrift fu‥ r Angewandte Geologie 14, 376. Maynard, J.B., 1981. Carbon isotopes as indicators of dispersal patterns in Devonian-Mississippian shales of the Appalachian Basin. Geology 9, 262-265. McCarty, H.B. and Felbeck, Jr., G.T., 1986. High temperature simulation of petroleum formation, IV. Stable carbon isotope studies of gaseous hydrocarbons. Org. Geochem. 9, 183-192. Michels, R., Enjelvin-Raoult, N., Elie, M., Mansuy, L., Faure, P., Oudin, J.L., 2002. Understanding of reservoir gas compositions in a natural case using stepwise semi-open artificial maturation. Marine and Petroleum Geology 19, 589–599. Michels, R., Landais, P., Philp, R.P., Torkelson, B.E., 1994. Effects of Pressure on Organic Matter Maturation during Confined Pyrolysis of Woodford Kerogen. Energy Fuels, 8 (3), 741–754. Michels, R., Landais, P., Philp, R.P., Torkelson, B.E., 1995. Influence of pressure and the presence of water on the evolution of the residual kerogen during confined, hydrous, and high-pressure hydrous pyrolysis of Woodford Shale. Energy and Fuels 9, 204–215. Michels, R., Landais, P., Torkelson, B.E., and Philp, R.P., 1995. Effects of effluents and water pressure on oil generation during confined pyrolysis and high-pressure hydrous pyrolysis. Geochimica et Cosmochimica Acta 59 (8). 1589- 1604. Mckirdy, D.M. and Powell, T.G., 1974. Metamorphic alterations of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2, 59 I-595. Mo, H.J., Huang, W.L., Machnikowska, H., 2007. Generation and expulsion of petroleum from coal macerals visualized in-situ during DAC pyrolysis. Int. J. Coal Geol. 73, 167–184. Mo, H.J., 2009. Application of 13C NMR Spectroscopy and DAC Pyrolysis to the Study of Oil Potential of Kerogen. Ph.D. thesis, University of Taiwan. Monthioux, M., Landais, P., Monin, J.-C., 1985. Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Organic Geochemistry 8, 275–292. Monthioux, M., 1988. Expected mechanisms in nature and in confined-system pyrolysis. Energy Fuels, 6, 843–847 Mu‥ ller, P., Wienholz, R., 1967. Bestimmung der natu‥rlichen Variationen der Kohlenstoffisotope in Erdo‥ l- und Erdgaskomponenten und ihre Beziehung zur Genese. Zeischrift fu‥ r Angewandte Geologie 13, 427–450. Pavia, D.L., Lampman G.M., Kritz, G.S., Engel, R.G., 2006. Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole, 797–817. ISBN 978-0-495-28069-9. Peters K.E., Moldowan J.M., and Sundaraman P., 1990. Effects of hydrous pyrolysis on biomarkers thermal maturity parameters: Monterey phosphatic and siliceous members. Org. Geochem. 15, 249-265. Price, L.C., 1994. Metamorphic free-for-all. Nature 370, 253– 254. Prinzhofer, A., Pernaton, E., 1997. Isotopically light methane in natural gases: bacterial imprint or segregative migration? Chem. Geol. 142, 193–200. Prinzhofer, A., Mello, M.R., Takaki, T., 2000a. Geochemical characterization of natural gas: a physical multivariable approach and its applications in maturity and migration estimates. AAPG Bull. 84 (8), 1152–1172. Prinzhofer, A., Mello, M.R., da Silva Freitas, L.C., Takaki, T., 2000b. New geochemical characterization of natural gas and its use in oil and gas evaluation. In: Mello, M.R., Katz, B.J. (Eds.), Petroleum systems of South Atlantic margins. AAPG Memoir, 73, 107–119. Prinzhofer, A., Girard, J. P., Buschaert, S., Huiban, Y., Noirez, S., 2009. Chemical and isotopic characterization of hydrocarbon gas traces in porewater of very low permeability rocks: The example of the Callovo-Oxfordian argillites of the eastern part of the Paris Basin Chemical Geology 260, 269–277. Qin, S., Dai, J., and Liu, X., 2007. The controlling factors of oil and gas generation from coal in the Kuqa Depression of Tarim Basin, China. International Journal of Coal Geology 70, 255–263. Rangel, A., Katzb, B., Ramireza, V., Vaz dos Santos Neto, E., 2003. Alternative interpretations as to the origin of the hydrocarbons of the Guajira Basin, Colombia. Marine and Petroleum Geology 20, 129–139. Ricchiuto, T., Schoell, M., 1987. Origin of natural gases in the Apulian Basin in south Italy: A case history of mixing of gases of deep and shallow origin. Organic Geochemistry 13, 311-318. Ruble T.E., 1996. Geochemical Investigation of the Mechanism of Hydrocarbon Generation and Accumulation in the Uinta Basin, Utah. Ph.D. thesis, University of Oklahoma. Sackett, W.M., 1978. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta, 42: 571-580. Sackett, W.M., 1978. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta, 42: 571-580. Sackett, W.M., Nakaparksin, S. and Dalrymple, D., 1968. Carbon isotope effects in methane production by thermal cracking. In: P.A. Schenck and I. Havenaar (Editors), Advances in Organic Geochemistry, 1968. Pergamon, Oxford, pp. 37-53. Sayari, A., Yang, Y., and Song, X., 1997. Hydrogen Effect on n-Butane Isomerization over Sulfated Zirconia-Based Catalysts. Journal of catalysis 167, 346–353. Schimmelmann, A., Boudoub, J.P., Lewan, M.D., Wintscha, R.P., 2001. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Organic Geochemistry 32, 1009–1018. Schimmelmann, A., Lewan, M.D., Wintsch, R.P., 1999. D/H isotope ratios of kerogen bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta 63, 3751–3766. Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 44, 649–661. Schoell, M., 1983. Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin 67, 2225-2238. Schoell, M., 1984. Stable isotopes in petroleum research. In: Brooks, J.B., Welte, D. (Eds.), Advances in Petroleum Geochemistry 1, Academic Press, London, 215– 245. Schoell, M., 1988. Multiple origins of methane in the earth. Chemical Geology 71, 1-10. Seewald, J.S., 1994. Evidence for metastable equilibrium between hydrocarbons under hydrothermal control. Nature 370, 285–287. Seewald, J.S., Benitez-Nelson, B.C., Whelan, J.K., 1998. Laboratory and theoretical constraints on the generation and composition of natural gas. Geochimica et Cosmochimica Acta 62, 1599–1617. Shamsuddin A.H.M., Khan S.I., 1991. Geochemical criteria of migration of natural gases in the Miocene sediments of the Bengal Foredeep, Bangladesh. Journal of Southeast Asian Earth Sciences 5, Nos 1-4, 89-100. Shen J.C., Huang W.L., 2007. Biomarker distributions as maturity indicators in coals, coaly shales and shales from Taiwan. Terrestrial Atmospheric and Oceanic Sciences. Terr. Atmos. Ocean. Sci., 18, 739-755. Silverman, S.R., Epstein, S., 1958. Carbon isotopic composition of petroleums and other sedimentary organic materials. American Association of Petroleum Geologists Bulletin 42, 998–1012. Silverman, S.R., 1964. Investigations of petroleum origin and evolution mechanisms by carbon isotope studies. Craid, H., Miller, S.L., Wesserburg, G.J. (Eds.), Isotopic and Cosmic Chemistry. North-Holland, Amsterdam, 92–102. Siskin, M., Katritzky, A.R., 1991. Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254, 231–237. Siskin, M., Scouten, C.G., Rose, K.D., Aczel, T., Colgrove, S.G., Pabst Jr., R.E., 1995. Detailed structural characterization of the organic material in Rundle Ramsay Crossing and Green River oil shales. Composition, Geochemistry and Conversion of Oil Shales (ed. C. Snape). Kluwer Academic Publishers, Dordrecht, 43–158. Smith, J.E., Erdman, J.G. and Morris, D.A., 1971. Migration, accumulation and retention of petroleum in the earth. 8th World Pet. Congr. Proc., 2: 13-26. Stadnitskaia, A., Ivanov, M.K., Poludetkina, E.N., Kreulen, R., van Weering T.C.E., 2008. Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions. Marine and Petroleum Geology 25, 1040–1057. Stahl, W.J., Carey, B.D., JR., 1975. Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware Basins, west Texas. Chemical Geology 16, 257—267. Stahl, W.J., 1978. Source rock-crude oil correlation by isotopic type-curves. Geochim. Cosmochim. Acta 42, 1573-1577. Stalker, L., Larter, S.R., Farrimond, P., 1995. A laboratory study of the mechanisms controlling CO2 and CH4 generation: Further implications for the role of water during artificial maturation. In: Grimalt, J.O., Dorronsoro, C. (Eds.), Organic Geochemistry: Developments and Applications to Energy, Climate, Environment, and Human History. Selected papers from the 17th International Meeting on Organic Geochemistry 4–8 September 1995, Donostia-San Sebastian, The Basque Country- Spain. A.I.G.O.A, Spain, 1070–1072. Stalker, L., Larter, S.R., Farrimond, P., 1998. Biomarker binding into kerogens: evidence from hydrous pyrolysis using heavy water (D2O). Organic Geochemistry 28, 239–253. Sundberg, K.R. and Bennett, C.R., 1983. Carbon isotope paleothermometry of natural gas. In: M. Bjoroy, P. Albrecht, C. Cornford et al. (Editors), Advances in Organic Geochemistry, 1981. Wiley, Chichester, pp. 769- 774. Su, K.H., 2003. Effect of host rock environment in the hydrocarbon gas generation. Master thesis, University of Taiwan. Su, K.H., Shen, J.C., Chang, Y.J., Huang, W.L., 2006. Generation of hydrocarbon gases and CO2 from a humic coal: Experimental study on the effect of water, minerals and transition metals. Organic Geochemistry 37, 437. Sun, C.H., Chang, S.C., Kuo, C.L., Wu, J.C., Shao, P.H., Oung, J.N., 2010. Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences 37, 105–116. Tissot, B., Durand, B., Espitalie′, J., Combaz, A., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. American Association of Petroleum Geologists Bulletin 58, 499–506. Tran, M.T., Gnep, N.S., Szabo, G., Guisnet, M., 1998. Isomerization of n-Butane over H-Mordenites under Nitrogen and Hydrogen: Influence of the Acid Site Density. Journal of catalysis 174, 185–190. Treibs, A., 1934. The occurrence of chlorophyll derivatives in an oil shale of the upper Triassic. Liebigs Annalen der Chemie 517, 103–114. Vandre, C., Cramer, B., Gerling, P., Winsemann, J., 2007. Natural gas formation in the western Nile delta (Eastern Mediterranean): Thermogenic versus microbial. Organic Geochemistry 38, 523–539. Waples, D.W. and Tornheim, L., 1978. Mathematical models for petroleum-forming processes: carbon isotope fractionation. Geochim. Cosmochim. Acta, 42, 467-472. Welte, D.H., 1969. Der 13C-Isotopengehalt von geradzahligen und ungerazahligen ho‥heren n-parafinen Paraffinen aus Erdo‥ l. Erdo‥ l und Kohle 22, 150–162. Welte, D.H., Kratochvil, H., Rullkötter, J., Ladwein, H., Schaefer, R.G., 1982. Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin. Chemical Geology 35, 33–68. Weng R.F., Huang W.L., Kuo C.L., Inan S., 2003. Characterization of oil generation and expulsion from coals and source rocks using diamond anvil cell pyrolysis. Organic Geochemistry 34, 771-787. Whiticar, M.J., 1994. Correlation of natural gases with their sources. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System – From Source to Trap, vol. 60. American Association of Petroleum Geologists Memoir, pp. 261–283. Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic methane formation in marine and fresh water environments: CO2 reduction vs. acetate fermentation – Isotope evidence. Geochimica et Cosmochimica Acta 50, 693–709. 鄭艾玲,2001,天然氣在移棲過程中吸附及擴散作用之實驗模擬,國立臺灣大學地質科學研究所碩士論文。 蘇冠華,2003,圍岩環境對於天然氣生成影響之研究,國立臺灣大學地質科學研究所碩士論文。 莫慧偵,2009,核磁共振與鑽石砧熱裂解在油母質生油潛能之評估,國立臺灣大學地質科學研究所博士論文。 凌妤甄,2009,實驗控制前驅物與溫度於無氧沉積物中微生物來源甲烷之動力學與同位素分化,國立臺灣大學地質科學研究所碩士論文。 張英如,2009,生油岩之沉積環境及成熟度對生油之螢光屬性、多環芳香烴和生物指標的影響之實驗研究,國立臺灣大學地質科學研究所博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47136 | - |
dc.description.abstract | 天然氣之同位素及同分異構物為成熟度、來源、產氣過程影響因子之重要指標。本研究利用生油岩封閉系統熱裂解方法,一為瞬時水合熱裂解,進行天然氣之分子間碳氫同位素及同分異構物之研究。另以圍壓熱裂解(金管實驗)進一步探討不同沉積環境所產出之天然氣的丁烷、戊烷同分異構物及成熟度參數之關係。
為了辨認在不同成熟度範圍所生成之氣體同位素組成及化學組份,本研究以台灣北部東坑層之低成熟度煤頁岩,利用瞬時水合熱裂解之人工加熱方法,進行在油窗及氣窗範圍內十個成熟度(0.65 % Ro ~2.25 % Ro) 的實驗。隨後使用氣相層析同位素比質譜儀(GC-IR-MS)分析天然氣之分子間碳氫同位素組成及氣相層析儀(GC)分析其氣體組分。 實驗結果顯示甲烷、乙烷、丙烷之分子間碳同位素值隨著成熟度之增加有倒轉的趨勢,並隨著成熟度之增加可將其劃分為三群。此外,將δ13Cn vs. 1/n (n為氣體分子之碳數)作圖,亦可發現隨著成熟度之不同可畫分為三群,且其分子間同位素比值呈現出一致性的δ13C3 < δ13C2 > δ13C1。進一步觀察可發現此種成群現象亦呈現於iC4/nC4 vs. iC5/nC5圖中,這暗示著此類型之油母質至少有三種結構複雜之組成。此種同位素倒轉的情形也存在前人研究中,但被解釋為不同來源的油氣混合的現象。然而由我們的研究結果顯示,這種同位素倒轉的現象,亦可由單一來源的生油岩在不同成熟度階段產氣所造成。此外,甲烷之氫同位素值,則隨著成熟度之增加,而有著上升的趨勢。 在天然氣的組份方面,C1/(C1+C2+C3)、iC4/nC4、iC5/nC5比值大致在油窗內隨著成熟度的增加而遞減,而在氣窗範圍則呈現遞增之現象。比較iC4/nC4和iC5/nC5之關係,可發現熱生成之天然氣其丁烷、戊烷同分異構物比值(iC4/nC4) (iC5/nC5),大約落在1:1的對角線上。本研究另以封閉系統圍壓熱裂解(金管實驗)模擬自然界之產氣情形,目的在於了解產氣過程之天然氣成分變異,並探討有機物的沉積環境對於丁烷及戊烷同分異構物比值之影響,進一步研究氣體組份之成熟度指標的影響程度。實驗生油岩有湖相、海相、陸相之油母質,在溫度320℃、壓力13 MPa下進行,使得樣品達到油窗初期至末期之成熟度(% Ro = 0.79, 0.95, 1.10, 1.34)。 結果顯示,參數C1/(C1+C2+C3)、iC4/nC4、iC5/nC5皆隨著成熟度增加而遞減,但根據不同類型之沉積環境其比值有所不同。由海相生油岩所產出之天然氣,顯示出最低的C1/(C1+C2+C3)、iC4/nC4、iC5/nC5比值,並隨著成熟度的增加而緩慢遞減,然而由陸相生油岩所產出之氣體,擁有較高之比值,並隨著增加之成熟度快速下降,湖相生油岩之熱生成天然氣,在低成熟度時,呈現變異較大之初始比值,而後隨著成熟度之增加表現出與陸相生油岩類似之趨勢。由實驗結果亦可發現,不同種類生油岩之產氣在油窗內呈現iC4/ nC4 < 0.6及iC5/ nC5< 0.7。進一步探討丁烷及戊烷同分異構物比值可發現,無論何種沉積環境,熱生成之天然氣其丁烷、戊烷同分異構物比值(iC4/nC4) (iC5/nC5),亦落在約1:1的對角線上。配合野外氣田資料,可以發現大部分野外採集之氣體的同分異構物組成顯示出較高之戊烷同分異構物比值(iC5/ nC5),此種現象可能肇因於混合作用、生物降解作用、擴散移棲作用。因此,本研究為天然氣之研究建立一個新指標,可能做為判別天然氣是否為原生或曾經由其他作用之產物。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:48:37Z (GMT). No. of bitstreams: 1 ntu-99-R97224105-1.pdf: 14271940 bytes, checksum: 2f6219edea4fe089e9a93e9fb6d7a418 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Table of Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Rationales and objectives 1 1.2 Review of previous studies 2 Chapter 2 Samples and Experiments 15 2.1 Samples 18 2.1.1 Hydrous pyrolysis experiment 18 2.1.2 Confined pressure (gold-tube) pyrolysis experiments 19 2.2 Experimental apparatus 21 2.2.1 Pressure vessel 21 2.2.2 Gas chromatography (GC) 21 2.2.2.1 Inlets 23 2.2.2.2 Columns 24 2.2.2.3 Detectors 24 2.3 Experimental procedures 26 2.3.1 Hydrous pyrolysis experiment 26 2.3.2 Confined pressure (gold-tube) pyrolysis experiments 28 2.4 Analysis of source rocks and gases 31 2.4.1 Hydrous pyrolysis 31 2.4.2 Confined pressure pyrolysis 36 Chapter 3 Results 39 3.1 General remark 39 3.1.1 Hydrous pyrolysis experiment 39 3.1.2 Confined pressure pyrolysis experiment 41 3.2 Results of hydrous pyrolysis experiment 41 3.2.1 Carbon and hydrogen isotope ratios from hydrous pyrolysis 41 3.2.2 Molecular composition of gas from hydrous pyrolysis 54 3.2.3 Isotope ratios versus chemical ratios 60 3.3 Results of Confined pressure pyrolysis experiment 62 3.3.1 Molecular composition of gas from confined pressure pyrolysis 62 Chapter 4 Discussions 72 4.1 Hydrous Pyrolysis 72 4.1.1 Carbon isotope ratios 72 4.1.2 Hydrogen isotope ratios 78 4.1.3 Molecular composition of gas 80 4.2 Confined pressure pyrolysis experiment 82 Chapter 5 Conclusions 90 References 92 Appendix I 107 Appendix II 109 Appendix III 133 | |
dc.language.iso | en | |
dc.title | 天然氣之分子間碳氫同位素及同分異構物之研究:生油岩封閉系統熱裂解實驗 | zh_TW |
dc.title | Compound-specific carbon, hydrogen isotopes and isomers analyses of gases generated from source rocks by closed system pyrolysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈俊卿,郭政隆,孫智賢,林立虹 | |
dc.subject.keyword | 天然氣,成熟度,同位素,丁烷,戊烷,異構物,熱裂解, | zh_TW |
dc.subject.keyword | natural gas,maturity,compound-specific isotope,C4C5 isomer,pyrolysis, | en |
dc.relation.page | 188 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 13.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。