Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤
dc.contributor.authorTzu-Hsien Shihen
dc.contributor.author石子賢zh_TW
dc.date.accessioned2021-06-15T05:48:31Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation王松永(1993)木材之引張性質、木材之壓縮性質。木材物理學,國立編譯館,337、488-544。
王松永(2002)商用木材(增定本)。中華林產事業協會,89-90、236-237。
葉民權、王栢村、吳康正(2007)柳杉結構用集成材之螺栓接合抗拉強度。台灣林業科學,22(2):101-111。
內政部營建署(2003)螺栓接合。木構造建築物設計及施工技術規範,營建雜誌社,6.12-6.18。
Bejtka, I., H.J. Blaß (2006) Self-tapping Screws as Reinforcements in Beam Supports. International Council for Research and Innovation in Building and Construction, Working Commission W18 – Timber Structures, 12.
Brown, W. F., S. R. Srawley (1966) Plane Strain Crack Toughness Testing of High Strength Metallic Materials. ASTM, Philadelphia, PA.
Canadian Wood Council (2005) Introduction to Wood Design, 11.27-11.34.
Chen C. J., T. L. Lee, D. S. Jeng (2003) Finite Element Modeling for the Mechanical Behavior of Dowel-Type Timber Joints. Computers and Structures, 81:2731-2738.
Dixon, J. R. (1960) Stress Distribution around a Central Crack in a Plate Loaded in Tension; Effect on finite Width of Plate. Journal of the Royal Aeronautical Society, 64:141.
Feddersen, C. E.(1966) Discussion of “Plain Strain Crack Toughness testing”. ASTM Special Technical Publication, 410:77-79.
Hong, J.P.(2007) Three-Dimensional Nonlinear Finite Element Model for Single and Multiple Dowel-Type Wood Connections. Thesis of Ph. D., University of British Columbia, 210.
Howland, R. C. J. (1929) On the Stresses in the Neighborhood of a Circular Hole In a Strip under Tension. Philosophical Transactions of the Royal Society (London) A, 229: 67.
Inglis, C.E. (1913) Stress in a Plate Due to the Presence of Cracks and Sharp Corners. Transactions of the Royal Institution of Naval Architects (London), 95:415.
Irwin, G. R.(1958) Fracture. Encyclopedia of Physics, Vol. 6
Isida, M. (1953) Form Factors of a Strip with an Elliptic Hole in Tension and bending. Scientific Papers of Faculty of Engineering, Tokushima University, 4:70.
Isida, M. (1965) Crack Tip Intensity Factors for the Tension of an eccentrically Cracked strip, report, Department of Mechanics, Lehigh University, Bethlehem, PA.
Kharouf, N., G. McClure, I. Smith (1999) Fracture Modeling of Bolted Connections in Wood and Composites. Journal of Materials in Civil Engineering, 11(4):345-352.
Koiter, W. T. (1965) Note on the Stress Intensity Factors for Sheet Strips with Crack under Tensile Loads. Report of Laboratory of Engineer Mechanics, Technological University, Delft, the Netherlands.
Mattheck, C. (2007) Secret design Rules of Nature. Forschungszentrum, Karlsruhe, 138.
Moaveni, S.(2008) Finite Element Analysis, Theory and Application with ANSYS, 3rd Ed. Pearson Education International, 861.
Moses, D. M., H. G. L. Prion (2004) Stress and Failure Analysis of Wood Composites: a New Model. Composites: Part B, 35(3):251-261.
Yasumura, M., L. Daudeville (2000) Fracture of Multiply-Bolted Joints under Lateral Force Perpendicular to Wood Grain. Journal of Wood Science, 46(3):187-192.
Pilkey,W. D., D. F. Pilkey (2008) Stress Concentration Factors, 3rd Ed. John Wiley & Sons, Inc., Hoboken, New Jersey.
Riley, W. F., L. D. Sturges, Don H. Morris (1999) Mechanics of Materials, 5th Ed. John Wiley & Sons, Inc., USA.
Shih, Tzu-Hsien, Far-Ching Lin (2010) The Study of a New Connection for Tension Member. 11th World Conference on Timber Engineering, 4:905-906.
Thoppul, S. D., J. Fingegan, R. F. Gibson (2009) Mechanics of Mechanically Fastened Joints in Polymer-Matrix Composite Structures – A Review. Composites Science and Technology, 69:301-329.
Timoshenko, S. and J. N. Goodier (1970) Theory of Elasticiy, 3rd Ed., McGraw Hill, New York, p.389.
Westergaard, H. M.(1939)Bearing Pressure and Cracks, Journal of Applied Mechanics, ASME Transactions, 61:A-49.
Wilkinson, T.L., R. E. Rowlands (1981) Analysis of Mechanical Joints in Wood. Experimental Mechanics, 21(11):408-414.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47133-
dc.description.abstract一般而言,木材在平行木理方向的拉伸強度(Tensile strength)比壓縮強度(Compression strength)較佳。而因為木材用於連接件時,易因金屬連接件或扣件形成損傷,應力集中(Stress concentration)也多半發生於木材和金屬之間的接合處。這就是為何木材的拉伸能力在接合件無法明顯發揮其優勢,在結構設計時,拉伸設計強度時常很接近甚至比壓縮強度還要來得低。
在過去的研究中,許多前人應用有限元素法(Finite element analysis, FEA)進行電腦分析,模擬木材在受力時的應力分布情況,甚至破壞模式。但這些模擬研究中多將木材設定為等方性(Isotropic)均質材料,然而木材事實上是異方性(Anisotropic)材料,更進一步說,是正交性(Orthotropic)材料,因此模擬結果和事實仍有些差距。
本研究中主要應用有限元素法,透過軟體Solid Works2008進行電腦模擬,研究新的銷栓連結方法,並探討如何降低應力集中;同時亦進行實體試驗。試驗材料,板材為花旗松(Pseudotsuga menziesii);金屬扣件則選用一般鋼材。模擬過程,金屬扣件設定為均質材料,而木材則具備三方向相異物理性質的正交性材料。卡氏座標(Cartesian coordinate)中,x方向給定於平行木理方向(縱向,Longitudinal direction),而徑向(Radial direction)及弦向(Tangential direction) 則分別指定為y、z方向。
板材長250 mm,寬60 mm,厚12 mm。栓孔中心位於板材正中央,孔右半側為固定半徑a = 9.5 mm之半圓孔,孔左半側則隨著模型的改變,而有不同比例軸長b之半橢圓。定義半橢圓兩軸長比例R = b/a = b/9.5 。自R = 0.75起,每隔0.25建一模型,並進行模擬分析。金屬扣件和栓孔左半側之半橢圓形狀相同,栓孔右半側留空,為銷施加荷重處。
外力荷重為980.67 N(100 kgf)的集中力,向左施加在金屬扣件上。板材右側端部為固定端,不可發生位移(Displacement)及形變(Deformation)。木材和板材間無塗布任何膠合劑,故施力後,允許元件彼此間發生間隙;摩擦力忽略不計。
比較異方性材料模擬結果,和以往均質材料所模擬的結果,其應力分布有明顯的差異。但應力集中仍存在,且發生處和均質材料及理論相近。
為了提高木材的有效利用,必需注意木材所擁有良好拉伸強度的特性。但往往因應力集中使得該特性效益降低。雖然傳統圓型栓孔對於其他大部分形狀,能降低不少應力集中,並認為圓型為目前較佳且使應力集中最小的形狀;而本研究發現,調整R值確實能改變應力分布的情況,並使應力極大值再降低,最大拉伸應力亦可減少。模擬結果顯示,當R值約為1.2∼1.25時有最佳效果。
實體試驗,利用應變規(Strain guage)及萬能強度試驗機(Universal testing machine)進行拉伸試驗,透過撰寫程式量測並處理應變(Strain)訊號。初步顯示,在應力集中發生的位置,該應變變化趨勢大致和電腦模擬相似,在荷重一定下,栓孔兩側拉伸處隨R值上升而應變下降,壓縮處則隨R值上升而應變絕對值上降。然而因實際木材的節、木理等缺點,及模型尺寸、應變規受破壞等問題,使得部分訊號並非精確。
zh_TW
dc.description.abstractGenerally, the tensile strength of wood is larger than that of compression strength in longitudinal direction. Because wood tissue could be damaged by metal connector or fastener, stress concentration always occurred at wood near the interface between wood and metal. This is the reason why the tensile strength value is almost close to or even lower than compression value in structural design.
In previous reviews, pioneers usually solved many problems by finite element analysis (FEA) simulation and assumed that the wood was isotropic. However, the wood is a kind of anisotropic material rather than isotropic. In fact, it is orthotropic.
In this study, a software called Solid Works2008 was used to find the results by FEA. The computer simulation is a tool that an assumed force can apply on a new type of bolt connection in order to reduce stress concentration.
Douglas fir (Pseudotsuga menziesii) was selected as the wood member. The material of the bolt was common steel. In this computer simulation, steel was set as an isotropic material. In Cartesian coordinate, the x-direction was assumed in longitudinal direction of the wood. The y- and z-direction represented radial and tangential directions of the wood respectively.
The total length of the member is 250 mm, and the width and the thickness are 60 and 12 mm. The hole is drilled in the central. The right side of the hole is a semicircle with 9.5 mm radius a, and the left side is a semiellipse with b mm semimajor axis (or with semiminor axis, if b<a). All the initial sizes are constant, but the length of the semi axis of the semiellipse is variable, so that the definition of the axis ratio R is b/a, where a is the radius of the semicircle. R is set starting from 0.75, and each model with an increment of 0.25 for R was built and analyzed.
The applied load was a concentrated force of 980.67 N(100 kgf) on the metal bolt towards the left. The right side of the member would be fixed and could not be moved and there was no deformation or displacement at the end surface.
The interface between the wood and the metal bolt was set to free. There was neither glue nor adhesive between them, so there was a clearance while the deformation and displacement happened. Friction was neglected, however.
Compared with simulation results, it is evident that the distribution of stress is quite different between isotropic and orthotropic member. But stress concentration still exists in both models at same locations.
To enhance the utilization of wood material, the good property of tensile strength of wood should be considered. But stress concentration around the hole will reduce this property. Adjusting the ratio of the axes of R can find a way to reduce the stress concentration. One of the concentrated stresses must be increased while another must be decreased whether the ratio increases or decreases. The simulation show that a good result can be obtained when the ratio R is about 1.2 to 1.25.
In the experiment, strain gauges and the universal testing machine were used. Signals were measured and converted through the written computer program. Basically, some of the results are similar with computer simulations. While the applied load is constant, the value of strain at the tensile area by the bolt hole decreases with R increasing, and the value of strain at the compression area by the bolt hole increases with R increasing. However, there were some disadvantages for mechanism such as nodes of wood, grain. And the dimension of the models was too small (limited by the testing machine) that the disadvantages appeared obviously. Because of the small dimension, the scale of strain gauges was enlarged, so that a part of the results were not so accuracy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:48:31Z (GMT). No. of bitstreams: 1
ntu-99-R97625042-1.pdf: 20451608 bytes, checksum: fcee167d7a26b7a10c3491415e197e3c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract v
第1章 前言 1
第2章 相關研究回顧 3
2.1 有限元素法之應用 3
2.2 螺栓常見之接合型式 4
2.3 木材螺栓接合的破壞型式 5
2.4 圓型孔應力集中分析 6
2.5 橢圓孔洞應力集中分析 11
第3章 材料與方法 18
3.1 螺栓接合方式選定 18
3.2 試驗材料 20
3.2.1 材料性質 20
3.2.2 器材工具 22
3.3 試驗方法 24
3.3.1 電腦模擬 25
3.3.1.1 模型尺寸 25
3.3.1.2 初始條件及邊界條件 26
3.3.1.3 網格 27
3.3.1.4 應力分析與量測 28
3.3.2 實體驗證 29
3.3.2.1 模型尺寸 29
3.3.2.2 應變量測 31
3.3.2.3 訊號擷取 32
3.3.2.4 資料處理 34
第4章 結果與討論 35
4.1 電腦模擬 35
4.1.1 均質材料模擬 35
4.1.2 位移 37
4.1.3 應力和應變 39
4.1.3.1 均質材料(等方性)與異方性材料比較 39
4.1.3.2 應力與R值之比較 43
4.1.3.3 應變 46
4.1.4 不同荷重之比較 47
4.1.5 木材尺寸改變造成的影響 49
4.2 實體試驗 52
4.2.1 破壞模式 52
4.2.2 訊號及資料處理 55
4.3 電腦模擬和實體試驗比較 58
4.4 誤差討論 59
第5章 結論 60
參考資料 61
dc.language.isozh-TW
dc.subject橢圓孔zh_TW
dc.subject螺栓接合zh_TW
dc.subject有限元素zh_TW
dc.subject木材zh_TW
dc.subject異方性zh_TW
dc.subject應力集中zh_TW
dc.subjectElliptical holeen
dc.subjectBolt jointen
dc.subjectFinite element analysis (FEA)en
dc.subjectWooden
dc.subjectAnisotropyen
dc.subjectStress concentrationen
dc.title不同半橢圓形栓孔對木材拉伸構件應力集中之影響zh_TW
dc.titleEffects of Different Semi-Elliptical Bolt Holes on the Stress Concentration of Tensile Wooden Membersen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉仲基,卓志隆,王松永,楊德新
dc.subject.keyword螺栓接合,應力集中,異方性,木材,有限元素,橢圓孔,zh_TW
dc.subject.keywordBolt joint,Stress concentration,Anisotropy,Wood,Finite element analysis (FEA),Elliptical hole,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
19.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved