Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47128
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭福佐
dc.contributor.authorChe-An Wuen
dc.contributor.author吳哲安zh_TW
dc.date.accessioned2021-06-15T05:48:22Z-
dc.date.available2015-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationAbernethy, D.R., Greenblatt, D.J., and Shader, R.I. (1986). Benzodiazepine hypnotic metabolism: drug interactions and clinical implications. Acta Psychiatr Scand Suppl 332, 32-38.
Amrein, R. (1978). [The pharmacokinetics and metabolism of flunitrazepam]. Klin Anasthesiol Intensivther, 8-24.
Ask, K., Decologne, N., Asare, N., Holme, J.A., Artur, Y., Pelczar, H., and Camus, P. (2004). Distribution of nitroreductive activity toward nilutamide in rat. Toxicol Appl Pharmacol 201, 1-9.
Boxenbaum, H.G., Posmanter, H.N., Macasieb, T., Geitner, K.A., Weinfeld, R.E., Moore, J.D., Darragh, A., O'Kelly, D.A., Weissman, L., and Kaplan, S.A. (1978). Pharmacokinetics of flunitrazepam following single- and multiple-dose oral administration to healthy human subjects. J Pharmacokinet Biopharm 6, 283-293.
Breimer, D.D., and Jochemsen, R. (1983). Clinical pharmacokinetics of hypnotic benzodiazepines: a summary. Br J Clin Pharmacol 16 Suppl 2, 277S-278S.
Brim, R.L., Nance, M.R., Youngstrom, D.W., Narasimhan, D., Zhan, C.G., Tesmer, J.J., Sunahara, R.K., and Woods, J.H. (2010). A thermally stable form of bacterial cocaine esterase: a potential therapeutic agent for treatment of cocaine abuse. Mol Pharmacol 77, 593-600.
Bryant, C., and DeLuca, M. (1991). Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266, 4119-4125.
Chandor, A., Dijols, S., Ramassamy, B., Frapart, Y., Mansuy, D., Stuehr, D., Helsby, N., and Boucher, J.L. (2008). Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases. Chem Res Toxicol 21, 836-843.
Chen (2001). Study on Flunitrazepam Toxicity.
Chern, C.H., Chern, T.L., Wang, L.M., Hu, S.C., Deng, J.F., and Lee, C.H. (1998). Continuous flumazenil infusion in preventing complications arising from severe benzodiazepine intoxication. Am J Emerg Med 16, 238-241.
Chern, T.L., Hu, S.C., Lee, C.H., and Deng, J.F. (1993). Diagnostic and therapeutic utility of flumazenil in comatose patients with drug overdose. Am J Emerg Med 11, 122-124.
Chou, L.M., Lai MY, Hsiao ML, Chang HJ. (1999). Time trend of substance use among adolescent students in Taiwan, 1991-1996. J Formos Med Assoc 98, 827-831.
Christofferson, A., and Wilkie, J. (2009). Mechanism of CB1954 reduction by Escherichia coli nitroreductase. Biochem Soc Trans 37, 413-418.
Drummer, O.H. (1998). Methods for the measurement of benzodiazepines in biological samples. J Chromatogr B Biomed Sci Appl 713, 201-225.
Drummer, O.H., Syrjanen, M.L., and Cordner, S.M. (1993). Deaths involving the benzodiazepine flunitrazepam. Am J Forensic Med Pathol 14, 238-243.
Feller, D.R., Morita, M., and Gillette, J.R. (1971). Enzymatic reduction of niridazole by rat liver microsomes. Biochem Pharmacol 20, 203-215.
Gatzonis, S.D., Angelopoulos, E.K., Daskalopoulou, E.G., Mantouvalos, V., Chioni, A., Zournas, C., and Siafakas, A. (2000). Convulsive status epilepticus following abrupt high-dose benzodiazepine discontinuation. Drug Alcohol Depend 59, 95-97.
Guo, Z., Wang, S., Wei, D., and Zhai, J. (2007). Development of a high-performance liquid chromatographic method for the determination of mifepristone in human plasma using norethisterone as an internal standard: application to pharmacokinetic study. Contraception 76, 228-232.
He, W., and Parissis, N. (1997). Simultaneous determination of flunitrazepam and its metabolites in plasma and urine by HPLC/DAD after solid phase extraction. J Pharm Biomed Anal 16, 707-715.
Heimbrook, D.C., and Sartorelli, A.C. (1986). Biochemistry of misonidazole reduction by NADPH-cytochrome c (P-450) reductase. Mol Pharmacol 29, 168-172.
Heyndrickx, B. (1987). Fatal intoxication due to flunitrazepam. J Anal Toxicol 11, 278.
Jaberipour, M., Vass, S.O., Guise, C.P., Grove, J.I., Knox, R.J., Hu, L., Hyde, E.I., and Searle, P.F. (2010). Testing double mutants of the enzyme nitroreductase for enhanced cell sensitisation to prodrugs: effects of combining beneficial single mutations. Biochem Pharmacol 79, 102-111.
Kilicarslan, T., Haining, R.L., Rettie, A.E., Busto, U., Tyndale, R.F., and Sellers, E.M. (2001). Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4. Drug Metab Dispos 29, 460-465.
Koder, R.L., Haynes, C.A., Rodgers, M.E., Rodgers, D.W., and Miller, A.F. (2002). Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry 41, 14197-14205.
Kolosova, A.Y., Shim, W.B., Yang, Z.Y., Eremin, S.A., and Chung, D.H. (2006). Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal Bioanal Chem 384, 286-294.
Kuang, H., Li, Q., Shen, C., Xu, J., Yuan, Y., Xu, C., and Wang, W. (2009). A highly sensitive method for the determination of 7-aminonitrazepam, a metabolite of nitrazepam, in human urine using high-performance electrospray liquid chromatography tandem mass spectrometry. Biomed Chromatogr 23, 740-744.
Leah M. Hesse, K.V., Lisa L. von Moltke, Richard I. Shader and David J. Greenblatt (2001). CYP3A4 Is the Major CYP Isoform Mediating the in Vitro Hydroxylation and Demethylation of Flunitrazepam. Drug Metab Dispos 29, 133-140.
Lemmer, B. (2007). The sleep-wake cycle and sleeping pills. Physiol Behav 90, 285-293.
Linwu, S.W., Syu, C.J., Chen, Y.L., Wang, A.H., and Peng, F.C. (2009). Characterization of Escherichia coli nitroreductase NfsB in the metabolism of nitrobenzodiazepines. Biochem Pharmacol 78, 96-103.
LinWu, S.W., Wang, A.H., and Peng, F.C. (2010). Flavin-containing reductase: new perspective on the detoxification of nitrobenzodiazepine. Expert Opin Drug Metab Toxicol 6, 967-981.
Mattila, M.A., and Larni, H.M. (1980). Flunitrazepam: a review of its pharmacological properties and therapeutic use. Drugs 20, 353-374.
Merkley, E.D., Parson, W.W., and Daggett, V. (2010). Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Eng Des Sel 23, 327-336.
Mizuno, K., Katoh, M., Okumura, H., Nakagawa, N., Negishi, T., Hashizume, T., Nakajima, M., and Yokoi, T. (2009). Metabolic activation of benzodiazepines by CYP3A4. Drug Metab Dispos 37, 345-351.
Moriya, F., and Hashimoto, Y. (2003). Tissue distribution of nitrazepam and 7-aminonitrazepam in a case of nitrazepam intoxication. Forensic Sci Int 131, 108-112.
Nasseau, M., Boublik, Y., Meier, W., Winterhalter, M., and Fournier, D. (2001). Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation. Biotechnol Bioeng 75, 615-618.
Nguyen, H., and Nau, D.R. (2000). Rapid method for the solid-phase extraction and GC-MS analysis of flunitrazepam and its major metabolites in urine. J Anal Toxicol 24, 37-45.
Papadopoulos, V., Baraldi, M., Guilarte, T.R., Knudsen, T.B., Lacapere, J.J., Lindemann, P., Norenberg, M.D., Nutt, D., Weizman, A., Zhang, M.R., et al. (2006). Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27, 402-409.
Peng, F.-C., Hsin-Hui, C., Sheng-Hui, T., Pei-Chun, C., and Shao-Chun, L. (2004). Nadph-Cytochrome P-450 Reductase is Involved in Flunitrazepam Reductive Metabolism in Hep G2 and Hep 3b Cells Journal of Toxicology and Environmental Health 67, 109-124.
Peterson, F.J., Holtzman, J.L., Crankshaw, D., and Mason, R.P. (1988). Two sites of azo reduction in the monooxygenase system. Mol Pharmacol 34, 597-603.
Peterson, F.J., Mason, R.P., Hovsepian, J., and Holtzman, J.L. (1979). Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254, 4009-4014.
Pirnay, S., Megarbane, B., Decleves, X., Risede, P., Borron, S.W., Bouchonnet, S., Perrin, B., Debray, M., Milan, N., Duarte, T., et al. (2008). Buprenorphine alters desmethylflunitrazepam disposition and flunitrazepam toxicity in rats. Toxicol Sci 106, 64-73.
Porter, T.D. (1991). An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16, 154-158.
Prosser, G.A., Copp, J.N., Syddall, S.P., Williams, E.M., Smaill, J.B., Wilson, W.R., Patterson, A.V., and Ackerley, D.F. (2010). Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem Pharmacol 79, 678-687.
Race, P.R., Lovering, A.L., White, S.A., Grove, J.I., Searle, P.F., Wrighton, C.W., and Hyde, E.I. (2007). Kinetic and structural characterisation of Escherichia coli nitroreductase mutants showing improved efficacy for the prodrug substrate CB1954. J Mol Biol 368, 481-492.
Rafil, F., Franklin, W., Heflich, R.H., and Cerniglia, C.E. (1991). Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol 57, 962-968.
Rickert, V.I., and Wiemann, C.M. (1998). Date rape among adolescents and young adults. J Pediatr Adolesc Gynecol 11, 167-175.
Robertson, M.D., and Drummer, O.H. (1995a). High-performance liquid chromatographic procedure for the measurement of nitrobenzodiazepines and their 7-amino metabolites in blood. J Chromatogr B Biomed Appl 667, 179-184.
Robertson, M.D., and Drummer, O.H. (1995b). Postmortem drug metabolism by bacteria. J Forensic Sci 40, 382-386.
Roldan, M.D., Perez-Reinado, E., Castillo, F., and Moreno-Vivian, C. (2008). Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32, 474-500.
Saum, C.A., and Inciardi, J.A. (1997). Rohypnol misuse in the United States. Subst Use Misuse 32, 723-731.
Sieghart, W. (1994). Pharmacology of benzodiazepine receptors: an update. J Psychiatry Neurosci 19, 24-29.
Simmons, M.M., and Cupp, M.J. (1998). Use and abuse of flunitrazepam. Ann Pharmacother 32, 117-119.
Smith, R.G., D'Souza, N., and Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133, 571-584.
Spain, J.C. (1995). Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49, 523-555.
Syu, C.J. (2008). Oxygen-Insensitive Nitroreductase of Escherichia coli: The Role of nfsA, nfsB and ydjA in the Reductive Metabolism of Flunitrazepam.
Tanelian, D.L., Kosek, P., Mody, I., and MacIver, M.B. (1993). The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757-776.
Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350-4354.
Verster, J.C., Veldhuijzen, D.S., and Volkerts, E.R. (2004). Residual effects of sleep medication on driving ability. Sleep Med Rev 8, 309-325.
Wickstrom, E., Amrein, R., Haefelfinger, P., and Hartmann, D. (1980). Pharmacokinetic and clinical observations on prolonged administration of flunitrazepam. Eur J Clin Pharmacol 17, 189-196.
Woods, J.H., and Winger, G. (1997). Abuse liability of flunitrazepam. J Clin Psychopharmacol 17, 1S-57S.
Zbaida, S., and Levine, W.G. (1990). Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P450. Biochem Pharmacol 40, 2415-2423.
Zenno, S., Koike, H., Tanokura, M., and Saigo, K. (1996). Conversion of NfsB, a minor Escherichia coli nitroreductase, to a flavin reductase similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri, by a single amino acid substitution. J Bacteriol 178, 4731-4733.
Zoldak, G., Musatov, A., Stupak, M., Sprinzl, M., and Sedlak, E. (2005). pH-induced changes in activity and conformation of NADH oxidase from Thermus thermophilus. Gen Physiol Biophys 24, 279-298.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47128-
dc.description.abstract苯二氮平 (benzodiazepines, BDZ) 是一類臨床常用的中樞神經系統抑制藥物,而氟硝西泮 (flunitrazepam, FZ) 為BDZ類藥物中的一種,商品名是Rohypnol (瑞士羅氏藥廠產),FZ化學名稱為5-(2-fluorophenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4- benzodiazepin-2-one,在化學結構中因為具有硝基及氟原子使其具有安眠、鎮靜、抗焦慮和肌肉鬆弛等作用,在分類上FZ屬長效型BDZ,在台灣FZ必須經由醫師開立處方才可取得。但由於服用後具有陶醉感作用(euphoric effects),使其成為年輕人使用的濫用藥物之一,並被廣泛使用為犯罪工具,因此又被稱為”約會強暴藥” (date-rape drug) ,在台灣一般人稱為FM2。FZ於人體內可經由氧化作用生成N-desmethylflunitrazepam (N-DFZ) 以及3-hydroxyflunitrazepam (3-HFZ) ,或經還原作用生成7-amino-flunitrazepam (7-AFZ)。
本實驗室先前研究發現肝臟NADPH-cytochrome P450 reductase可參與FZ的還原反應,以及發現腸內菌中硝基還原酶也可在腸道中將FZ進行還原作用。文獻報導FZ及N-DFZ具安眠作用,FZ及其代謝物90%經由尿液排出,10%經由糞便排出。過去臨床上曾使用Flumazenil (1,4-Midazobenzodiazepine),亦屬BDZ類物質,結構上同樣具有1,4-diazepine,可透過與FZ的競爭性阻斷作用來達到解毒目的,但因為Flumazenil藥效短,在急診使用Flumazenil並不能減少這些病人的罹病率及死亡率,且對於使用Flumazenil後清醒之病人需小心觀察至少十二小時,以免因效果減退,病人再度昏迷或進一步發生呼吸抑制等危險現象,所以若用於維持性治療時劑量往往需隨時依病患之反應作調整,不甚方便實際,甚至危險。因而激發本研究動機,即如何加速7AFZ產生及排除率的增加,降低FZ及N-DFZ在體內的累積量。實驗設計以in vitro及in vivo方式進行。首先以硝基還原酶NfsB野生型分別在有氧及厭氧環境中進行FZ還原代謝反應。接著再以基因轉殖技術,將E.coli中硝基還原酶NfsB其酵素受質-活性結合位置在胺基酸序列Tyr-68-Gly、Phe-70-His、Asn-71-Ser及Phe-124-Trp等位置進行點突變,反應結果發現單點突變型還原代謝作用皆比野生型有顯著上增加。再以最佳代謝結果的突變位置Asn-71-Ser及Phe-124-Trp進行雙突變後做酵素動力學之探討,結果顯示雙點突變型更能有效提升還原代謝作用。此外,酵素與基質間親和力以野生型為最佳,若以一定量的酵素所能催化的最高反應速率則以雙點突變型最高。最後透過動物模式了解硝基還原酶NfsB及經點突變之硝基還原酶對小鼠處理FZ的毒性之探討,利用組織病理切片觀察腦部、心臟、肺臟、脾臟、肝臟及腎臟,亦透過血清及尿液臨床生化值測定,評估認為硝基還原酶對小鼠生物體並無顯著傷害。利用ELISA方式檢測硝基還原酶NfsB及經點突變之硝基還原酶在小鼠之酵素動力學,結果發現NfsB野生型在小鼠體內半衰期約為6.85小時且單點突變型與雙點突變型半衰期分別更長達至14.14與28.91小時。同時測量硝基還原酶NfsB及經點突變之硝基還原酶對小鼠處理FZ後,在6小時的尿液及12小時的血清中,所測得之FZ消耗量皆以雙點突變型最多。最後記錄硝基還原酶NfsB及經點突變之硝基還原酶對小鼠處理FZ睡眠時間改變之觀察,結果顯示,單點突變型可明顯縮短睡眠時間,而雙點突變型更可縮短將近一半睡眠時間,綜合實驗各項結果,提供未來硝基還原酶NfsB實際應用在人體中當作對FZ的解毒劑新的展望。
zh_TW
dc.description.abstractBenzodiazepines (BDZ) are clinical drugs that slow certain types of nerve signals throughout the central nervous system. Flunitrazepam (FZ), Rohypnol®, 5-(2-fluorophenyl)-1,3-dihydro-1- methyl-7-nitro-2H-1,4-benzodiazepin-2-one, which has a nitro group and a fluorine atom in the molecule, is a benzodiazepine derivative and pharmacologically a full agonist whose hypnotic effect predominates over the sedative, anxiolytic, muscle relaxing and anticonvulsant effects, characteristics of benzodiazepines. FZ, a long-acting benzodiazepine, is a prescription drug in Taiwan. Unfortunenately, for its euphoric effect, FZ is a popular drug abused among young adults, and often used by rapists, therefore FZ has been nicknamed as “date-rape drug”. In Taiwan, it is also called FM2. In human, FZ is oxidized to the major metabolites N-demethylflunitrazepam (N-DFZ), 3-hydroxyflunitrazepam (3-HFZ) and reduced to 7-aminoflunitrazepam (7-AFZ).
In previous study from our lab, we demonstrated not only NADPH- cytochrome P450 reductase in liver but also nitroreductase of the intestinal microflora were involved in FZ reduction. According to other studies, FZ and N-DFZ have sedative effect. About 90 % of a single dose is eliminated by the kidney after biotransformation, while about 10 % is eliminated in the feces. In the past, Flumazenil, which also has 1,4-diazepine, was a specific benzodiazepine antagonist which can prevent or abolish selectively at the receptor level all centrally mediated effects of benzodiazepines, but the duration of benzodiazepine-antagonistic action of flumazenil is limited. In emergency case, Flumazenil can not reduce the mortality of the patients, furthermore, the flumazenil infusion was necessary to keep the patient fully awake and able to cough. Therefore, unless additional information becomes available supporting flumazenil's ability to reverse benzodiazepine-induced respiratory depression, it should not be used for this indication. However, the aim of the present experiment is how to increase the formation of 7-AFZ and the velocity of elimination, and to decrease the accumulation of FZ and N-DFZ. It can be separated in vitro and in vivo parts. First of all, the experiment confirmed the enzyme activity of FZ reduction by nitroreductase NfsB under anaerobic and aerobic condition. Secondary, we did the amino acid sequence point mutants including Tyr-68-Gly, Phe-70-His, Asn-71-Ser and Phe-124-Trp, the enzyme-substrate active site in nitroreductase NfsB and to proceeded reductive reaction. We found that the point mutants Asn-71-Ser and Phe-124-Trp have the two of the best enzyme activity for 7-AFZ formation, thus to be the double mutant then compared with wild type and single mutant type. From its kinetic study, we found that double mutant enhance more reductive reaction. About the affinity between enzyme and substrate, wild type is the best. However, the double mutant has the highest Vmax value. Finally, we found out the toxicity of FZ after injection of nitroreductase NfsB and its mutants by tissue pathology including brain, heart, lung, spleen, liver and kidney, and by biochemical data of serum and urine to assess nitroreductase in mice is safety without significant injury. We found that the kinetic were performed with nitroreductase NfsB and its mutants in mice by ELISA assay. In mice, the half life of nitroreductase NfsB wild type was 6.85 hours and its single and double mutant was even more to 14.14 and 28.91 hours, respectively. In addition, the consumption of FZ in urine at 6 hours, and in serum at 12 hours, double mutant had the greatest efficiency. Finally, we recorded the sleeping time recovery experiments. The sleeping time was also significant reduce by single point mutant, moreover, the double mutant could reduce half sleeping time.
Therefore, these results suggested that nitroreductase NfsB could be the new perspective on the detoxification of FZ in human in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:48:22Z (GMT). No. of bitstreams: 1
ntu-99-R97447005-1.pdf: 4264206 bytes, checksum: 492cfda848e3959a4b45589f78a12fe1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents圖表目錄------------------------------------------------------------------- II
中文摘要------------------------------------------------------------------- IV
英文摘要------------------------------------------------------------------- VI
縮寫表-------------------------------------------------------------------- VIII


第一章 緒論------------------------------------------------------------ 1
第二章 實驗材料與方法---------------------------------------------- 13
第三章 實驗結果------------------------------------------------------- 27
第四章 實驗討論------------------------------------------------------- 33
第五章 參考文獻------------------------------------------------------- 40
第六章 圖表集---------------------------------------------------------- 47
dc.language.isozh-TW
dc.subject氟硝西泮zh_TW
dc.subject苯二氮平zh_TW
dc.subject點突變zh_TW
dc.subject硝基還原&#37238zh_TW
dc.subjectflunitrazepamen
dc.subjectbenzodiazepineen
dc.subjectpoint mutanten
dc.subjectnitroreductaseen
dc.title大腸桿菌中氧氣不敏感性之硝基還原酶NfsB對Flunitrazepam的解毒作用之新的展望zh_TW
dc.titleOxygen-Insensitive Nitroreductase NfsB of Escherichia coli : New Perspective on the Detoxification of Flunitrazepamen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林國煌,林泰元
dc.subject.keyword苯二氮平,氟硝西泮,硝基還原&#37238,點突變,zh_TW
dc.subject.keywordbenzodiazepine,flunitrazepam,nitroreductase,point mutant,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved