請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | |
| dc.contributor.author | Jun-Ming Chen | en |
| dc.contributor.author | 陳俊名 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:48:07Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | 1. AISC. (2005). Seismic provisions for structural steel buildings, Chicago, IL.
2. Bracci, J. M., Kunnath, S. K., and Reihorn, A. M., (1997) Seismic performance and retrofit evaluation for reinforced concrete structures, ASCE, J. Struct. Eng. 123 (1), 3-10. 3. Building Seismic Safety Council (BSSC), (2000). Prestandard and Commentary for the seismic Rehabilitation of Buildings, FEMA-356, Federal Emergency Management Agency, Washington, D.C. 4. Goel, R. K., Chopra, A. K., (2005). Extension of Modal Anlysis to Compute Member Forces, Earthquake Spectra, Volume 21, No. 1, 125-139. 5. Chopra, A. K., Goel, R. K., Chintanapakdee, C., (2004). Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands, Earthquake Spectra, Volume 20, No. 3, 757-778. 6. Chopra, A. K., and Goel, R. K., (2002). A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Eng. and Structural Dynamics, 31 (3), 561-582. 7. Christopoulos C, Filiatrault A, Uang C.M., Folz B. (2002). Post-tensioned energy dissipating connections for moment-resisting steel frame. Journal of structure Engineering; 128(9):1111-1120. 8. Chou C-C and Chen J-H. (2009). Column restraint in post-tensioned self-centering moment frames. Earthquake Eng. and Structural Dynamics (EQE 08-0235R2, accepted for publication). 9. Chou C-C, Chen J-H, Chen Y-C, and Tsai K-C. (2006). Evaluating performance of post-tensioned steel connections with strands and reduced flange plates, Earthquake Eng. and Structural Dynamics, 35,1167-1185. 10. Chou C-C, Chen J-H. Seismic behavior of steel beams post-tensioned to a reinforced concrete column with reduced flange plates. Report No. NSC 93-2625-Z-009-003, National Science Council, Taiwan, (2005). 11. Chou C-C, and Uang C-M. (2003). A procedure foe evaluationg seismic energy demand of framed structures, Earthquake Eng. and Structural Dynamics, 32,229-244. 12. Garlock MM, Sause R, and Ricles MJ. (2007). Behavior and design of posttensioned steel frame systems. Journal of Structural Engineering, 133(3), 389-399. 13. Garlock, M. (2002). “Full-scale testing, seismic analysis, and design of post-tensioned seismic resistant connections for steel frames.” Ph.D. dissertation, Civil and Environmental Engineering Dept., Lehigh Univ., Bethlehem, PA. 14. Goel, R. K., and Chopra, A. K., (2005). Extension of modal pushover analysis to compute member forces, Earthquake Spectra, Volume 21, No. 1, 125-139. 15. Goel, R. K., and Chopra, A. K., (2004). Evaluation of modal and FEMA pushover analysis: SAC Buildings, Earthquake Spectra, Volume 20, No. 1, 225-254. 16. Gupta, B., and Kunnath, S. K., (2000). Adaptive spectra-based pushover procedure for seismic evaluation of structures, Earthquake Spectra 16 (2), 367-392. 17. IBC 2000. International Building Code. International Code Council, Falls Church, Virginia. 18. Kim, H-J., and Christopoulos, C., (2009). Seismic design procedure and seismic response of post-tensioned self-centering steel frames, Earthquake Eng. and Structural Dynamics, 38 (3), 355-376. 19. Ricles, J. M., Sause, R., Garlock, M. M. and Zhao, C., (2001). Post-tensioned seismic-resistant connections for steel frames. Journal of Structural Engineering, 127(2), 113–121. 20. Tsai K-C, Chou C-C, Lin C-L, Chen P-C, Jhang S-J. (2008). Seismic self-centering steel beam-to-column moment connections using bolted friction devices. Earthquake Engineering and Structural Dynamics, 37, 627-645. 21. Tsai, K. C. and Lin, B. Z. (2003). Development of an Object-oriented Nonlinear Static and Dynamic 3D Structural Analysis Program. CEER/R92-04, Center for Earthquake Engineering Research, National Taiwan University. 22. 周中哲,陳俊翰(2007)「預力鋼梁與鋼筋混凝土柱自行復位接頭之耐震行為」,中國土木水利工程學刊,第十九卷,第三期,425-437頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47119 | - |
| dc.description.abstract | 本研究主要為探討以靜力之模態側推分析應用於三、六、十二樓兩跨預力構架之耐震能力評估,本研究首先以兩個預力構架模型做比較,一為旋轉彈簧模型(RS model)、另一為軸向彈簧模型(AS model),在三、六樓構架於位移與層間側位移角差距在10%以內、十二樓構架低樓層差距達75%,其主要原因為AS模型之梁剪力會造成柱底額外的彎矩產生,而在RS模型無法模擬,故在越高樓層可看出梁剪力影響越大、RS與AS模型在動力分析下之鋼腱內力增量差距很大,在十二樓構架一樓處有無窮大的差距,其原因為當AS模型無鋼腱內力增量(0 kN)時,此時RS模型有鋼腱內力增量會造成差距至無窮大、而兩模型因計算柱束制力之方式不同,故在某些樓層會有較大的差距,而造成如此大的差距主要原因為該樓層之柱束制力很小會使得差距放大,且當兩模型柱束制力拉壓力不一致時會造成差距有小於-1的值,使圖形看似無規則,反之,在柱束制力較大的樓層兩模型之差距就不會相差太大。雖鋼腱內力增量與柱束制力差距很大,但其差距的量值對於初始預力最大分別佔約20%、10%,故在評估梁軸力時,兩模型最大差距在十二樓構架也僅約23%。兩模型於十二樓構架有大的差距,但在三、六樓在位移、層間側位移角與梁軸力差距皆很小,故本研究先不考慮兩模型固有的差距而使用模態側推分析於較簡易的旋轉彈簧模型來評估模態側推的可行性。模態側推分析於旋轉彈簧模型上在位移(三、六樓構架最大差距於約5%,十二樓構架最大差距在中間樓層約10%)與層間側位移(三樓構架最大差距約10%,六、十二樓構架最大差距約20%)有好的評估能力,而在鋼腱內力增量(三樓構架頂樓最大差距約40%、六樓構架頂樓最大差距約30%、十二樓構架在頂樓處最大差距約65%)與柱束制力評估上有大的差距,但預力構架系統之梁軸力為初始預力、鋼腱內力增量、柱束制力以及側推力或慣性力所產生的梁桿件軸力所組成,即使鋼腱內力增量以及柱束制力有較大的差距,但在考慮整體梁軸力時,此較大的差距對於整體梁軸力的影響很小(三、六樓構架梁軸力最大差距約10%、十二樓構架梁軸力最大差距約20%)。 | zh_TW |
| dc.description.abstract | This research is investigating the modal pushover analysis (MPA) for estimating seismic demands of 3, 6, and 12-story steel post-tensioned self-centering frames. First, comparing the behavior of RS model and AS model under the ground motion. There has a large error in 12-story frame at the lower floor (75%) on displacement and interstroy drift, but has good estimation of 3 and 6-story frame (10%) on displacement and interstory drift. In strand force increment, at the 12-story frame lower floor has infinite error. The reason is when the AS model has no strand force increment (0 kN) but RS model has, then at this situation the error is infinite. The column restraining force also has large error, because the AS and RS model have different calculation on column restraining force. But the error is not especially significant for the beam axial force, because the column restraining force is small of the large error floor. Even though the strand force incerement and column restraining force has large error, but this large error is small force the beam axial force, the largest error is only 23% at the 12-story frame lower floor.
Neglecting the inherent error between the two models, then using the MPA on the PT-frame. At displacement (3 and 6-story frame has 5% error, 12-story frame has 10% error) and interstory drift (3 and 6-story frame has 10% error, 12-story frame has 20% error). Althogh the strand force increment (3-story frame has 40% error, 6-story frame has 30% error, 12-story frame has 65% error ) and the column restraining force has large error, but this error for the beam axial force is small (3, 6-story frame has 10% error, 12-story frame has 20% error). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:48:07Z (GMT). No. of bitstreams: 1 ntu-99-R97521243-1.pdf: 7090418 bytes, checksum: 84107a31cfc570c69ff7bc6b6b15ce29 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書………………………………………………………………………I 誌 謝………………………………………………………………………………II 中文摘要………………………………………………………………………………III 英文摘要………………………………………………………………………………IV 目 錄………………………………………………………………………………..V 表 目 錄……………………………………………………………………………VIII 圖 目 錄…………………………………………………………………………..……X 第一章 緒論 1 1.1 前言與文獻回顧 1 1.2 研究動機與目的 3 1.3 研究內容 4 第二章 預力構架設計 5 2.1 前言 5 2.2 預力預鑄建築構架 5 2.2.1 預力構架型式 5 2.2.2 預力構架變形行為與接頭彎矩 5 2.3 預力構架設計 6 2.3.1 設計層級 6 2.3.2 預力構架設計流程 7 2.3.3 載重與地震側力(步驟1) 9 2.3.4 預力梁柱與鋼腱設計(步驟2、3與4) 11 2.3.5 挫屈束制削切鋼板(RFP) 13 2.3.6 建立電腦模型及參數設定 14 2.4 預力構架模擬 15 2.4.1 梁柱接頭模型 15 2.4.2柱底模型 17 2.4.3 預力構架之側推分析 18 第三章 模態側推分析應用在預力鋼構架之耐震評估 22 3.1 前言 22 3.2 模態側推分析 22 3.2.1 模態分析 22 3.2.2 模態側推分析 24 3.3 模態側推預力構架實例 27 3.4 預力構架梁軸力的預測 30 3.4.1 預力構架旋轉彈簧模型之梁軸力 30 3.4.2鋼腱、鋼棒之內力增量 31 3.4.3柱束制力 31 3.5 考慮高模態影響預測預力構架之梁軸力 33 3.5.1 模態側推計算桿件力 33 3.5.2 考慮高模態之桿件內力 34 3.5.3 考慮高模態影響鋼腱內力增量 35 3.5.4 考慮高模態影響柱之束制力 36 3.5.5 考慮高模態之梁軸力 39 3.6 探討模態側推與動力分析之誤差 39 第四章 模態側推分析評估預力構架動力分析之行為 42 4.1 前言 42 4.2 軸向彈簧模型評估旋轉彈簧模型 42 4.2.1 三樓預力構架之評估 42 4.2.2 六樓預力構架之評估 46 4.2.3 十二樓預力構架之評估 48 4.2.4 小結 50 4.3高模態之影響 51 4.3.1 側向位移 51 4.3.2 層間側位移角 52 4.3.3 界面開合轉角 53 4.3.4 鋼腱內力增量 54 4.3.5 桿件內力 55 4.3.6 柱對梁束制軸力 55 4.3.7 梁軸力 56 4.4 小結 57 第五章 結論 59 附錄.A 61 參考文獻 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 旗幟型遲滯迴圈 | zh_TW |
| dc.subject | 模態側推 | zh_TW |
| dc.subject | 預力構架 | zh_TW |
| dc.subject | 柱束制力 | zh_TW |
| dc.subject | 自行復位 | zh_TW |
| dc.subject | self-centering | en |
| dc.subject | post-tensioned frame | en |
| dc.subject | modal pushover analysis | en |
| dc.subject | flag shape hysteresis | en |
| dc.subject | column restraining force | en |
| dc.title | 模態側推分析應用於預力自復位鋼構架系統之耐震能力評估 | zh_TW |
| dc.title | A Modal Pushover Analysis for Estimating Seismic Demands
of Steel Post-tensioned Self-centering Frames | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 田堯彰,羅俊雄 | |
| dc.subject.keyword | 模態側推,預力構架,柱束制力,自行復位,旗幟型遲滯迴圈, | zh_TW |
| dc.subject.keyword | modal pushover analysis,post-tensioned frame,column restraining force,self-centering,flag shape hysteresis, | en |
| dc.relation.page | 234 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
