請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4710完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張文亮(Wen-Lian Chang) | |
| dc.contributor.author | Wei-Chen Su | en |
| dc.contributor.author | 蘇緯宸 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:45:40Z | - |
| dc.date.available | 2018-07-20 | |
| dc.date.available | 2021-05-14T17:45:40Z | - |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-08 | |
| dc.identifier.citation | 1. 王寿兵,屈云芳,经佐琴,蒋朝光,吴千红,1998,不同温度条件下环境水分对中国林蛙幼体存活的影响,生态学杂志 17:63-65。
2. 王晓黎,2007,上海郊区泽蛙 (Rana limnocharis) 的越冬生态学研究,华东师范大学。 3. 林文隆,蔡顯修,吳雪如,2007,水圳水泥化對其間生物數量變動之影響,Journal of Chinese Soil and Water Conservation 38:31-42。 4. 林春富,楊育昌,吳和瑾,2011,溫度與缺水效應對史丹吉氏小雨蛙蝌蚪存活與發育之影響,台灣生物多樣性研究 13:225-235。 5. 侯文祥,張源修,2005,季節變化對台灣七種蛙類利用水岸邊坡之活動力影響研究,農業工程學報 51:54-68。 6. 莊舒云,2004,車輛行駛車道偏離警示系統之開發研究,國立臺灣大學工程科學及海洋工程學研究所碩士論文。 7. 陳王時,向高世,2006,台灣 32 種蛙類圖鑑,北市野鳥學會。 8. 陳賜隆,呂光洋,1994,翡翠樹蛙生殖行為之研究,師大生物學報 29:89-106。 9. 楊懿如,向高世,李鵬翔,李承恩,2005,台灣兩棲動物野外調查手冊,台北: 行政院農業委員會林務局。 10. 蔡雯嘉,2011,太魯閣國家公園莫氏樹蛙(Rhacophorus moltrechti)繁殖活動之海拔變異,國立東華大學,花蓮縣。 11. 蕭文龍,2007,多變量分析最佳入門實用書: SPSS+ LISREL (SEM),臺北,碁峰資訊。 12. 顏月珠,2001,應用統計學:最新課程含Microsoft Excel, SAS範例。 13. Adolph, E. F. 1932. The vapor tension relations of frogs. Biological Bulletin:112-125. 14. Akaike, H. 1981. Likelihood of a model and information criteria. Journal of econometrics 16:3-14. 15. Araujo, M. B., W. Thuiller, and R. G. Pearson. 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33:1712-1728. 16. Babbitt, K. J. 2005. The relative importance of wetland size and hydroperiod for amphibians in southern New Hampshire, USA. Wetlands Ecology and Management 13:269-279. 17. Beard, K. H., A. K. Eschtruth, K. A. Vogt, D. J. Vogt, and F. N. Scatena. 2003. The effects of the frog Eleutherodactylus coqui on invertebrates and ecosystem processes at two scales in the Luquillo Experimental Forest, Puerto Rico. Journal of Tropical Ecology 19:607-617. 18. Beattie, R. 1985. The date of spawning in populations of the common frog (Rana temporaria) from different altitudes in northern England. Journal of Zoology 205:137-154. 19. Bellis, E. D. 1962. The influence of humidity on wood frog activity. American Midland Naturalist:139-148. 20. Benard, M. F. 2014. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Global change biology. 21. Biggs, J., P. Williams, M. Whitfield, P. Nicolet, and A. Weatherby. 2005. 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation-Marine and Freshwater Ecosystems 15:693-714. 22. Blaustein, A. R., B. A. Han, R. A. Relyea, P. T. J. Johnson, J. C. Buck, S. S. Gervasi, and L. B. Kats. 2011. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Pages 108-119 in R. S. Ostfeld and W. H. Schlesinger, editors. Year in Ecology and Conservation Biology. 23. Blaustein, A. R., J. M. Kiesecker, D. P. Chivers, and R. G. Anthony. 1997. Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences of the United States of America 94:13735-13737. 24. Blaustein, A. R., and D. B. Wake. 1990. Declining amphibian populations: a global phenomenon. Trends in Ecology and Evolution 5:203-204. 25. Blaustein, A. R., and D. B. Wake. 1995. The puzzle of declining amphibian populations. Scientific American 272:52-57. 26. Bozdogan, H. 1987. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika 52:345-370. 27. Brand, A. B., and J. W. Snodgrass. 2010. Value of Artificial Habitats for Amphibian Reproduction in Altered Landscapes. Conservation biology 24:295-301. 28. Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media. 29. Burnham, K. P., and D. R. Anderson. 2004. Multimodel inference understanding AIC and BIC in model selection. Sociological methods & research 33:261-304. 30. Duellman, W. E., and L. Trueb. 1986. Biology of amphibians. McGraw Hill, New York. 31. Fuyuki, A., Y. Yamaura, Y. Nakajima, N. Ishiyama, T. Akasaka, and F. Nakamura. 2014. Pond area and distance from continuous forests affect amphibian egg distributions in urban green spaces: A case study in Sapporo, Japan. Urban Forestry & Urban Greening 13:397-402. 32. Gallant, A. L., R. W. Klaver, G. S. Casper, and M. J. Lannoo. 2007. Global rates of habitat loss and implications for amphibian conservation. Copeia 2007:967-979. 33. Hamer, A. J., S. J. Lane, and M. J. Mahony. 2002. Management of freshwater wetlands for the endangered green and golden bell frog (Litoria aurea): roles of habitat determinants and space. Biological Conservation 106:413-424. 34. Hazell, D., J. M. Hero, D. Lindenmayer, and R. Cunningham. 2004. A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biological Conservation 119:61-71. 35. Hecnar, S. J. 1995. Acute and chronic toxicity of ammonium nitrate fertilizer to amphibians from southern Ontario. Environmental Toxicology and Chemistry 14:2131-2137. 36. Hecnar, S. J., and R. T. McLoskey. 1996. Amphibian species richness and distribution in relation to pond water chemistry in south-western Ontario, Canada. Freshwater Biology 36:7-15. 37. Herrmann, H. L., K. J. Babbitt, M. J. Baber, and R. G. Congalton. 2005. Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biological Conservation 123:139-149. 38. Holzer, K. A. 2014. Amphibian use of constructed and remnant wetlands in an urban landscape. Urban Ecosystems 17:955-968. 39. Houlahan, J. E., C. S. Findlay, B. R. Schmidt, A. H. Meyer, and S. L. Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404:752-755. 40. Hurvich, C. M., and C.-L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307. 41. Just, J. J., R. N. Gatz, and E. C. Crawford. 1973. Changes in respiratory functions during metamorphosis of the bullfrog, Rana catesbeiana. Respiration physiology 17:276-282. 42. Knutson, M. G., J. R. Sauer, D. A. Olsen, M. J. Mossman, L. M. Hemesath, and M. J. Lannoo. 1999. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA. Conservation biology 13:1437-1446. 43. Lin, J.-Y., E. H. Tsao, T.-C. Lee, and L. Y. Shaw. 2004. Stream physical parameters and habitat requirement: the case of the Formosan salmon. Ecological Engineering 22:305-309. 44. Noland, R., and G. R. Ultsch. 1981. The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia:645-652. 45. Pierce, B. A. 1985. Acid tolerance in amphibians. bioscience 35:239-243. 46. Porej, D., and T. E. Hetherington. 2005. Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring of amphibian communities. Wetlands Ecology and Management 13:445-455. 47. Rodel, M.-O., and R. Ernst. 2004. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica (Bonn) 10:1-14. 48. Rouse, J. D., C. A. Bishop, and J. Struger. 1999. Nitrogen pollution: An assessment of its threat to amphibian survival. Environmental Health Perspectives 107:799-803. 49. Scheffers, B. R., R. M. Brunner, S. D. Ramirez, L. P. Shoo, A. Diesmos, and S. E. Williams. 2013. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45:628-635. 50. Scheffers, B. R., and C. A. Paszkowski. 2013. Amphibian use of urban stormwater wetlands: The role of natural habitat features. Landscape and Urban Planning 113:139-149. 51. Shoemaker, V., and K. A. Nagy. 1977. Osmoregulation in amphibians and reptiles. Annual Review of Physiology 39:449-471. 52. Sparling, D. W., and G. M. Fellers. 2009. Toxicity of two insecticides to california, USA, anurans and its relevance to declining amphibian populations. Environmental Toxicology and Chemistry 28:1696-1703. 53. Strijbosch, H. 1979. Habitat selection of amphibians during their aquatic phase Oikos 33:363-372. 54. Todd, B. D., T. M. Luhring, B. B. Rothermel, and J. W. Gibbons. 2009. Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. Journal of Applied Ecology 46:554-561. 55. Vickers, M., C. Manicom, and L. Schwarzkopf. 2011. Extending the cost-benefit model of thermoregulation: high-temperature environments. The American Naturalist 177:452-461. 56. Wells, K., and Wells. 1977. The social behaviour of anuran amphibians. Animal behaviour 25:666-693. 57. Whiles, M. R., K. R. Lips, C. M. Pringle, S. S. Kilham, R. J. Bixby, R. Brenes, S. Connelly, J. C. Colon-Gaud, M. Hunte-Brown, and A. D. Huryn. 2006. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment 4:27-34. 58. Zimmerman, B. L. 1994 Audio strip transects. Pages 92-97 in W. Heyer, M. Donnelly, R. McDiarmid, L. Hayek, and M. Foster, editors. Measuring and monitoring biological diversity. Standard methods for amphibians. Smithsonian Institution Press, Washington DC. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4710 | - |
| dc.description.abstract | 都市發展改變原有地貌、破壞生物棲地,讓生物生存空間減少;為追求永續發展,都市環境的生物棲地營造逐漸受到重視。本研究選擇蛙類做為調查對象,以評估都市內棲地營造成效。無尾目的蛙類為臺灣常見的生物,其生長歷程及生理需求等特點反應棲息環境的品質。調查樣區位於台北市文山區的永建生態園區,包含十個樣點,區分為人工生態草溝、自然溼地與人工排水溝三種棲地類型。透過收集生物、水質、微氣候及微棲地等該區域資料,使用複迴歸分析與赤池信息準則進行分析,以找出影響蛙類數量及空間分布之關鍵環境因子模型,提供都市未來營造與管理蛙類棲地考量依據。
將本研究樣區環境因子與對數轉換之澤蛙(Fejervarya limnocharis)數量,作線性複迴歸分析,分成兩部分進行討論:(1)十個月平均環境因子與(2)各月份環境因子。平均環境因子(2014年4月至2015年1月)分析結果中,顯著的正向因子有空氣相對濕度與水中溶氧量,負向因子則為最高溫度。以上三個因子的變化範圍:空氣相對溼度在75至83 %,水中溶氧量範圍在1.95到5.14 mg/L,最高溫度在28.57至38.14°C。而各月份環境因子(2014年4月至2014年11月)對澤蛙的影響,透過赤池信息準則篩選,各個單月份迴歸模型所使用的參數組合都不同。然而,八個單月份模型中,遮蔽率、水域面積、植被覆蓋率、碳酸氫根與水中溶氧量,多呈正相關;水域邊坡坡度與水中硝酸態氮,則多呈負相關。永建生態園區內十個樣點的綜合分析顯示,人工生態草溝遮蔽率大於80 %、水域面積大於50 m2及水域邊坡坡度小於20°,硝酸態氮濃度小於0.1 mg/L,碳酸氫根濃度大於200 mg/L,有較高的澤蛙數量;自然溼地植被覆蓋率大於80 %,亦有次多之澤蛙數量。 | zh_TW |
| dc.description.abstract | Urban sprawl causes habitat loss and the conversion of natural landscapes to residential, business, and industrial areas. Recently, efforts have been put in place to create environments for wildlife in urban areas to achieve sustainable development. Amphibians were selected as target species in this study to evaluate the effectiveness of the habitat creation in the urban area. Anurans are common species in Taiwan and sensitive to the changes of environment conditions due to their physiology and life history. Field surveys were conducted at five natural wetlands, three constructed ecological ditches, and two drainage ditches within Yong-Jian Ecological Park, Wenshan District, Taipei City. Collected data included richness of frogs, water quality, microclimate and microhabitat of the ten wetlands. A multiple regression method and corrected Akaike information criterion (AICc) were used to analyze the data by two approaches.
First, the relationship between the average frog (Fejervarya limnocharis) number and the average environmental parameters (April 2014 to January 2015) were analyzed to provide a general perspective. Dissolved oxygen (1.95 to 5.14 mg/L) and relative humidity (75 to 83%) are positively correlated to the average frog number whereas maximum air temperature (28.57 to 38.14 °C) is negatively. Second, the data from April 2014 to November 2014 (eight months) were calculated on monthly basis. The used parameters in the eight multiple regression models were all different from each other. However, tree canopy, grass coverage, pond surface area, dissolved oxygen, and bicarbonate ion are positively correlated with the number of the Fejervarya limnocharis. However, the occurrence of the Fejervarya limnocharis was negatively related to bank slope and nitrate concentration. According to this study, the number of the Fejervarya limnocharis was higher at the constructed ecological ditches sites with following attributes: tree canopy > 80%, water surface > 50 m2, bank slope < 20°, Nitrate concentration < 0.1 mg/L, hydrogen carbonate ion > 200 mg/L. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:45:40Z (GMT). No. of bitstreams: 1 ntu-104-R02622007-1.pdf: 5210416 bytes, checksum: adcc82e4d3c03fe21ab8714565169695 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 前言 1 1.1兩棲綱現況 1 1.2兩棲綱無尾目 2 1.3水質與水文影響 3 1.4氣候影響 4 1.5微棲地影響 5 1.6都市蛙類棲地營造 6 1.7研究目的 8 第二章 材料與方法 9 2.1研究地點 9 2.2水質資料收集 13 2.3現地環境因子調查 14 2.4微棲地環境因子調查 16 2.5蛙類分布調查 19 2.6數據分析方法 22 2.7資料分析 27 第三章 結果與討論 29 3.1樣區環境因子 29 3.2蛙類分布 37 3.3赤池信息準則與複迴歸分析 43 第四章 結論與建議 63 4.1結論 63 4.2建議 64 參考文獻 65 附錄水質實驗數據 71 附錄蛙類調查數據 76 附錄現地環境因子調查數據 86 附錄微棲地調查數據 97 附錄平均環境因子殘差分析 103 附錄各月環境因子殘差分析 104 圖目錄 圖1.1 世界兩棲動物概略分布圖 2 圖2.1 研究地區位置圖 10 圖2.2 樣區分布圖 10 圖2.3 自然溼地N1 11 圖2.4 自然溼地N2 11 圖2.5 自然溼地N3 11 圖2.6 自然溼地N4 11 圖2.7 自然溼地N5 11 圖2.8 人工生態草溝P1 11 圖2.9 人工生態草溝P2 12 圖2.10 人工生態草溝P3 12 圖2.11 人工排水溝S1 12 圖2.12 人工排水溝S2 12 圖2.13 LX101最高最低溫度計 14 圖2.14 攜帶式水質儀器 14 圖2.15 5334 WISEWIND溫濕度計 14 圖2.16 記錄現地環境因子 14 圖2.17 劃分示意圖 16 圖2.18 植被覆蓋率示意圖 17 圖2.19 1平方公尺壓克力板 17 圖2.20 坡度儀 17 圖2.21 現地量測邊坡坡度 17 圖2.22 原始照片 18 圖2.23 二值化處理後照片 18 圖2.24 黑眶蟾蜍 19 圖2.25 布氏樹蛙 19 圖2.26 貢德氏赤蛙 19 圖2.27 台北樹蛙 20 圖2.28 面天樹蛙 20 圖2.29 小雨蛙 20 圖2.30 腹斑蛙 20 圖2.31 澤蛙 20 圖2.32 拉都希氏赤蛙 20 圖2.33 各月蛙類總數量 28 圖3.1 人工生態草溝P2邊坡 36 圖3.2 自然溼地N4 36 圖3.3 人工排水溝S1 36 圖3.4 人工排水溝S2 36 圖3.5 2014年3月到2015年2月蛙類水池占用百分比 42 圖3.6 月均溫與澤蛙數量變化 51 圖3.7 遮蔽率與澤蛙數量散佈圖(4月) 51 圖3.8 遮蔽率與澤蛙數量散佈圖(5月) 52 圖3.9 遮蔽率與澤蛙數量散佈圖(8月) 52 圖3.10 遮蔽率與澤蛙數量散佈圖(10月) 53 圖3.11 水域面積與澤蛙數量散佈圖(4月) 53 圖3.12 水域面積與澤蛙數量散佈圖(5月) 54 圖3.13 水域面積與澤蛙數量散佈圖(6月) 54 圖3.14 水域面積與澤蛙數量散佈圖(8月) 55 圖3.15 水域邊坡坡度與澤蛙數量散佈圖(4月) 56 圖3.16 水域邊坡坡度與澤蛙數量散佈圖(6月) 56 圖3.17 水域邊坡坡度與澤蛙數量散佈圖(8月) 57 圖3.18 水中硝酸態氮濃度與澤蛙數量散佈圖(7月) 58 圖3.19 水中硝酸態氮濃度與澤蛙數量散佈圖(8月) 58 圖3.20 水中硝酸態氮濃度與澤蛙數量散佈圖(10月) 59 圖3.21 植被覆蓋率與澤蛙數量散佈圖(4月) 60 圖3.22 植被覆蓋率與澤蛙數量散佈圖(6月) 60 圖3.23 水中碳酸氫根與澤蛙數量散佈圖(6月) 61 圖3.24 水中碳酸氫根與澤蛙數量散佈圖(7月) 62 表目錄 表2.1 現地環境因子檢測方法 15 表2.2 兩棲類調查方式比較 21 表2.3 模型優劣表 24 表3.1 各樣區水質狀況 30 表3.1 各樣區水質狀況(續) 31 表3.2 各樣區現地環境因子 33 表3.2 各樣區現地環境因子(續) 34 表3.3 各樣區棲地環境因子 35 表3.4 各月份蛙類數量 38 表3.4 各月份蛙類數量(續) 39 表3.5 各樣區蛙類分布數量 40 表3.5 各樣區蛙類分布數量(續) 41 表3.6 校正K值 43 表3.7 模型優劣比較 44 表3.8 模型M1的變異數分析 45 表3.9 模型M1係數分析結果 45 表3.10各月環境因子模型之標準化係數 49 表3.10各月環境因子模型之標準化係數(續) 50 表3.11各月份篩選後模型之環境因子累積出現次數(p<0.05) 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微氣候 | zh_TW |
| dc.subject | 蛙類 | zh_TW |
| dc.subject | 生態草溝 | zh_TW |
| dc.subject | 水質 | zh_TW |
| dc.subject | 赤池信息準則 | zh_TW |
| dc.subject | 微棲地 | zh_TW |
| dc.subject | Akaike information criterion | en |
| dc.subject | constructed ecological ditches | en |
| dc.subject | microhabitat | en |
| dc.subject | water quality | en |
| dc.subject | microclimate | en |
| dc.subject | frog | en |
| dc.title | 營造都市生態溝為蛙類棲地-以臺北市永建生態園區為例 | zh_TW |
| dc.title | Study on Creating Urban Ecological Ditch for Frog Habitat in Yong-Jian Ecological Park, Taipei | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張尊國,劉仁沛,尤少彬 | |
| dc.subject.keyword | 蛙類,生態草溝,水質,微氣候,微棲地,赤池信息準則, | zh_TW |
| dc.subject.keyword | frog,constructed ecological ditches,water quality,microclimate,microhabitat,Akaike information criterion, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 5.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
