請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平(Yi-Ping Hung) | |
| dc.contributor.author | Jui-Yu Hung | en |
| dc.contributor.author | 洪瑞佑 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:47:44Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | [1] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,” Proc. PAMI, vol. 24, no. 1, pp. 34–58, 2002.
[2] P. Viola and M. J. Jones, “Robust real-time face detection,” Proc. IJCV, vol. 57, no. 2, pp. 137–154, 2004. [3] T. F. Cootes, G. J. Taylor, D. H. Cooper, J. Graham, “Active Shape Models: their Training and Application,” Proc. CVIU 61, 38-59, 1995. [4] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active Contour Models,” Proc. IJCV 1, 321-331, 1987. [5] Yuanzhong Li, Wataru Ito, “Shape Parameter Optimization for AdaBoosted Active Shape Model,” Proc. ICCV 1, 251-258, 2005. [6] T. Cootes, G. Edwards, and C. Taylor., “Active Appearance Model,” Proc. ECCV, 2:484–498, Jun 1998. [7] T. F. Cootes, G. J. Edwards, C. J. Taylor, ”Comparing Active Shape Models with Active Appearance Models,” Proc. British Machine Vision Conference (ed T.Pridmore, D.Elliman), 1, 173-182, 1999. [8] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A literature survey,” Proc. ACM Comput. Ssurv., vol. 35, no. 4, pp.339-458, 2003. [9] Heisele, B., Ho, P., Wu, J., Poggio, T., ”Face recognition: component-based versus global approaches,” Proc. CVIU 91, 6–12, 2003. [10] Pentland, A., Moghaddam, B., Starner, T. “View-based and modular eigenspaces for face recognition,” Proc. CVPR, pp. 84–91, 1994. [11] J. Huang, P. C. Yuen, W.-S. Chen, and J. H. Lai, “Component-based LDA method for face recognition with one training sample,” in AMFG ’03: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Washington, DC, USA: IEEE Computer Society, 2003, p. 120. [12] B. Heisele, S. Thomas, P. Sam, and T. Poggio, “Hierarchical classification and feature reduction for fast face detection with support vector machines,” Proc. Pattern Recognition, vol. 36, no. 9, pp. 2007–2017, 2003.` [13] B. Heisele, T. Serre, and T. Poggio, “A component-based framework for face detection and identification,” Proc. IJCV, vol. 74, no. 2, pp. 167–181, 2007. [14] Ahonen, T., Hadid, A., Pietikainen, M., “Face description with local binary patterns: Application to face recognition,” Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence. pp. 2037–2041, 2006. [15] Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y., “Robust face recognition via sparse representation,” Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence. pp. 210–227, 2009. [16] Lee, P.H., Hsu, G.S., Hung, Y.P., “Face verification and identification using facial trait code,” Proc. CVPR. pp. 1613–1620, 2009. [17] S. Gutta and H. Wechsler, “Gender classification of human faces using hybrid classifier systems,” Proc. Neural Networks, International Conference. pp. 1353–1358 vol.3, 1997. [18] P. Du and D. Xiaoqing, “The application of decision tree in gender classification,” Proc. Image and Signal Processing. vol. 4, May 2008, pp. 657–660. [19] Z. Sun, G. Bebis, X. Yuan, and S. Louis, “Genetic feature subset selection for gender classification: a comparison study,” in Applications of Computer Vision, 2002. (WACV 2002). Proc. Sixth IEEE Workshop on, 2002, pp. 165–170. [20] B. Moghaddam and M.-H. Yang, “Learning gender with support faces, ” Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 707–711, 2002. [21] X. Leng and Y. Wang, “Improving generalization for gender classification,” Proc. IEEE International Conference on Image Processing, Oct. 2008, pp. 1656–1659. [22] P. Viola, G. Shakhnarovich, G. Shakhnarovich, P. A. Viola, B. Moghaddam, and B. Moghaddam, “A unified learning framework for real time face detection and classification,” Proc. IEEE International Conference on Automatic Face and Gesture Recognition, 2002. [23] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Proc. CVPR, vol. 1, 2001, pp. 511–518. [24] S. Baluja and H. A. Rowley, “Boosting sex identification performance,” Proc. International Journal of Computer Vision, vol. 71, no. 1, pp. 111–119, 2007. [25] Milborrow, S., Nicolls, F., “Locating Facial Features with an Extended Active Shape Model,” Proc.10th European Conference on Computer Vision, pp 504-513, 2008. Marseille, France. [26] C.-C. Chang and C.-J. Lin, LIBSVM, “a library for support vector machines,” 2001, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. [27] Lee, P.H., Wu, S.W., Hsu, G.S., Hung, Y.P., “Robust Face Recognition Using Probabilistic Facial Trait Code,” Proc. 11th European Conference on Computer Vision, 2010. [28] M. Turk and A. Pentland, “Eigenfaces for recognition,” Proc. Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991. [29] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection,” Proc.PAMI, vol. 19, no. 7, pp. 711–720, 1997. [30] J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas, “Face verification using error correcting output codes,” Proc. CVPR, vol. 1, 01, pp. I–755– I–760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47106 | - |
| dc.description.abstract | 隨著人臉影像技術發展,各項相關研究有如人臉偵測、對位、追蹤、辨識等領域均有進展。而隨著技術越趨穩定,許多需求也因應而生,如:應用人臉身分辨識技術之大樓智慧監控、企業員工績效查勤、門禁管制、海關通關人員檢視,犯罪人員檢搜、金融提款安全認證、電腦手機安全登入。而近年來人臉性別與年齡辨識也成為熱門研究主題,相關應用如百貨櫥窗智慧展示等需求也陸續開發中。
因此我們提出一套系統結合人臉自動偵測,影像對位,身分辨識、性別與辨識,可廣泛應用於眾多場合。本系統主要分成兩部分:第一階段:人臉影像正規化。使用者傳入影像、影片、或是藉由網路攝影機擷取畫面,系統便會自動進行人臉偵測,並且利用動態形狀模型(Active Shape Model),擷取人臉特徵點。利用這些臉上特徵點,將人臉影像精準對位,取出正規化人臉影像。第二階段:利用人臉特徵碼(Facial Trait Code),進行身分辨識;結合PCA(Principle Component Analysis),與SVM(Support Vector Machine)實行性別辨識。 人臉辨識演算法註冊單張影像,在無光線,表情變化之影響下,正確率可達95.3%,如果測試影像包含光線表情變化,正確率則為92.5%。性別辨識則使用3658 張男性與2720女性影像作為訓練資料,其正確率為94.8%. 系統單張從影像輸入,到辨識結果輸出,平均單人影像僅需0.65秒即可完成。 | zh_TW |
| dc.description.abstract | Face recognition can be applied to many different fields. For example, the building entrance security control, the criminal verification, and the identity of the network trade, etc. The gender and age recognition also can be used for department store. The digital screen can show different products with different genders people.
We propose a fully automatic system that detects and normalizes faces in images and recognizes their identity and genders. There are two parts in this system. First step is face acquisition. We use Active Shape Model to find facial features, which are eyes, nose, and mouth. To boost the recognition accuracy, we correct the in-plane rotations of faces, and align faces based on estimated above positions of facial features. Second step is recognition. There are face recognition, gender recognition and age recognition. We use Facial Trait Code (FTC) to encode facial images for face recognition, and we combine the Principle Component Analysis (PCA) and Support Vector Machine (SVM) for gender recognition. Totally it cost only 0.65 seconds to process single face image from face detection to classification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:47:44Z (GMT). No. of bitstreams: 1 ntu-99-R97944016-1.pdf: 3097741 bytes, checksum: d4e9feaf854cd64e2a1a59e13cd617b2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS i LIST OF FIGURES i LIST OF TABLES i Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Related Work 10 2.2 System Overview 13 Chapter 3 Face Detection and Alignment 16 3.1 Face Detection 16 3.2 Face Alignment 18 3.3 Non-Face Rejection 20 Chapter 4 Face Classification 23 4.1 Identification 23 4.2 Gender Recognition 26 Chapter 5 System Implementation 28 5.1 imFace Framework 28 5.2 Model Training Framework 29 Chapter 6 Conclusions and Future Works 31 6.1 Conclusions 31 6.2 Future Works 32 Bibliography 33 | |
| dc.language.iso | en | |
| dc.subject | 性別辨識 | zh_TW |
| dc.subject | 人臉偵測 | zh_TW |
| dc.subject | 身分辨識 | zh_TW |
| dc.subject | 人臉對位 | zh_TW |
| dc.subject | Face Alignment | en |
| dc.subject | Face Detection | en |
| dc.subject | Gender Recognition | en |
| dc.subject | Face Recognition | en |
| dc.title | 人臉影像自動校正及辨識系統 | zh_TW |
| dc.title | An Automatic Face Alignment and Classification System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖偉權(Wee-Kheng Leow),陳祝嵩(Chu-Song Chen),劉庭祿(Tyng-Luh Liu) | |
| dc.subject.keyword | 人臉偵測,身分辨識,性別辨識,人臉對位, | zh_TW |
| dc.subject.keyword | Face Detection,Face Alignment,Face Recognition,Gender Recognition, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
