請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47102完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘 | |
| dc.contributor.author | Ko-Chih Lin | en |
| dc.contributor.author | 林格至 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:47:37Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | 1. Marr, R. and A. Kopp, Liquid Membrane Technology - a Survey of Phenomena, Mechanisms, and Models. International Chemical Engineering, 1982. 22(1): p. 44-60.
2. de Gyves, J. and E.R. de San Miguel, Metal Ion Separations by Supported Liquid Membranes. Industrial and Engineering Chemistry Research, 1999. 38: p. 2182-2202. 3. Bukhari, N., M.A. Chaudry and M. Mazhar, Triethanolamine - Cyclohexanone Supported Liquid Membranes Study for Extraction and Removal of Nickel Ions from Nickel Plating Wastes. Journal of Membrane Science, 2006. 283: p. 182-189. 4. Bacon, G. and I. Mihaylov, Solvent Extraction as an Enabling Technology in the Nickel Industry. Journal of South African Institute of Mining and Metallurgy, 2002. 102(8): p. 435-443. 5. Trti -Petrovi , T. and J. Å. Jönsson, Application of SLM Extraction for Investigation of Metal-humic Acid Bindings. Desalination, 2002. 148: p. 247-251. 6. Alexander, P.R. and R.W. Callahan, Liquid Liquid Extraction and Stripping of Gold with Microporous Hollow Fibers. Journal of Membrane Science, 1987. 35(1): p. 57-71. 7. Izatt, R.M., D.K. Roper, R.L. Bruening and J.D. Lamb, Macrocycle-Mediated Cation Transport Using Hollow Fiber Supported Liquid Membranes. Journal of Membrane Science, 1989. 45: p. 73-84. 8. Moreno, C. and M. Valiente, Studies on the Mechanism of Transport of Lanthanide Ions Through Supported Liquid Membranes Containing Di-(2-ethylhexyl)phosphoric Acid (D2EHPA) as a Carrier. Journal of Membrane Science,1999. 155(1): p. 155-162. 9. Prasad, R. and K.K. Sirkar, Hollow Fiber Solvent-Extraction - Performances and Design. Journal of Membrane Science, 1990. 50(2): p. 153-175. 10. Ho, W.S.W., B. Wang, T.E. Neumuller and J. Roller, Supported Liquid Membranes for Removal and Recovery of Metals from Waste Waters and Process Streams. Environmental Progress, 2001. 20(2): p. 117-121. 11. Ho, W.S.W. and T.K. Poddar, New Membrane Technology for Removal and Recovery of Chromium from Waste Waters. Environmental Progress, 2001. 20(1): p. 44-52. 12. Li, C.L., H.X. Zhao, T. Tsuru, D. Zhou and M. Matsumura, Recovery of Spent Electroless Nickel Plating Bath by Electrodialysis. Journal of Membrane Science, 1999. 157(2): p. 241-249. 13. Van de Voorde, I., L. Pinoy and R.F. De Ketelaere, Recovery of Nickel Ions by Supported Liquid Membrane(SLM) Extraction. Journal of Membrane Science, 2004. 234: p. 11-21. 14. Kertes, A.S. and C.J. King, Extraction Chemistry of Fermentation Product Carboxylic-Acids. Biotechnology and Bioengineering, 1986. 28(2): p. 269-282. 15. King, C.J., Amine-Based Systems for Carboxylic-Acid Recovery. Chemtech, 1992. 22(5): p. 285-291. 16. Zhang, J. and Y.Y. Dai, Extraction Technique Based on Chemical Complexation and Its Applications. Modern Chemical Industry, 2000. 20(2): p. 19-22. 17. Ritcey, G.M. and A.W. Ashbrook, Solvent Extraction - Principles and Applications to Process Metallurgy - part 1. Elsevier Science Publishers B. V.,1984. Amsterdam. 18. Rousseau, R.W., Handbook of Separation Process Technology. John Wiley & Sons,1987. New York. 19. 王樹楷, 銦冶金. 冶金工業出版社, 2007. 北京. 20. 戴猷元, 秦煒, 張瑾及單欣昌, 有機物絡合萃取技術. 化學工業出版社, 2007.北京. 21. Rydberg, J., C. Musikas and G.R. Choppin, Principles and Practices of Solvent Extraction. Marcel Dekker, Inc., 1992. New York. 22. Idris, J., M. Musa, C.Y. Yin and K.H.K Hamid, Recovery of Nickel from Spent Catalyst from Palm Oil Hydrogenation Process Using Acidic Solutions. Journal of Industrial and Engineering Chemistry, 2010.16(2): p. 251-255. 23. Darvishi, D., D.F. Haghshenas, E.K. Alamdari, S.K. Sadrnezhaad and M. Halali, Synergistic Effect of Cyanex 272 and Cyanex 302 on Separation of Cobalt and Nickel by D2EHPA. Hydrometallurgy, 2005. 77: p. 227-238. 24. Belkhouche, N.E., M.A. Didi and D. Villemin, Separation of Nickel and Copper by Solvent Extraction Using Di-2 Ethylhexylphosphoric Acid-based Synergistic Mixture. Solvent Extraction and Ion Exchange, 2005. 23(5): p. 677-693. 25. Narita, H., M. Tanaka, Y. Sato, T. Yaita and Y. Okamoto ,Structure of the Extracted Complex in the Ni(II)-LIX84I System and the Effect of D2EHPA Addition. Solvent Extraction and Ion Exchange, 2006. 24(5): p. 693-702. 26. King, C.J., Amine-Based Systems for Carboxylic-Acid Recovery. Chemtech, 1992. 22(5): p. 285-291. 27. Sato, T., H. Watanabe and H. Nakamura, Extraction of Lactic, Tartaric, Succinic, and Citric Acids by Trioctylamine. Bunseki Kagaku, 1985. 34: p. 559-563. 28. Akiba, K. and H. Freiser, The Role of the Solvent in Equilibrium and Kinetic Aspects of Metal Chelate Extractions. Analytica Chimica Acta, 1982. 136: p. 329-337. 29. Muller, W. and R.M. Diamond, The Extraction of Hydrohalic Acids by Trilaurylamine. Journal of Physical Chemistry, 1966. 70(11): p. 3469-3479. 30. Porter, M.C., Handbook of Industrial Membrane Technology. Noyes Publications, 1988. New Jersey. 31. Shean, G.M. and K. Sollner, Carrier Mechanisms in Movement of Ions across Porous and Liquid Ion Exchanger Membranes. Annals of the New York Academy of Sciences, 1966. 137(A2): p. 759-776. 32. Kemperman, A.J.B., D. Bargeman, T. Vandenboomgaard and H. Starthmann, Stability of Supported Liquid Membrane: State of the Art. Separation Science and Technology, 1996. 31(20): p. 2733-2762. 33. Baker, R.W., M.E. Tuttle, D.J. Kelly and H.K. Lonsdale, Coupled Transport Membranes -1- Copper Separations. Journal of Membrane Science, 1977. 2: p. 213-233. 34. Li, N.N. and N.J. Somerset, Separating Hydrocrabons with Liquid Membranes United State Patent Office: 3410794, 1968. 35. Schwinge, J., P.R. Neal, D.E. Wiley, D.F. Fletcher and A.G. Fane, Spiral Wound Modules and Spacers: Review and Analysis. Journal of Membrane Science, 2004. 242: p. 129-153. 36. Hernández-Cruz, L., G.T. Lapidus and F. Carrillo-Romo, Modelling of Nickel Permeation through a Supported Liquid Membrane. Hydrometallurgy, 1998. 48(3): p. 265-276. 37. Marty, J., M. Persin and J. Sarrazin, Study of Mechanism of Ni(II) Dialysis, by Extraction with D2EHPA, through an Ultrafiltration. Journal of Membrane Science, 1997. 137:p. 211-218. 38. Danesi, P.R., E.P. Horwitz, G.F. Vandegrift and R. Chiarzia, Mass Transfer Rate through Liquid Membranes - Interfacial Chemical Reactions and Diffusion as Simultaneous Permeability Controlling Factors. Separation Science and Technology, 1981. 16(2): p. 201-211. 39. Danesi, P.R., Separation of Metal Species by Supported Liquid Membranes. Separation Science and Technology, 1984. 19(11-1): p. 857-894. 40. Juang, R.S., Modelling of the Competitive Permeation of Cobalt and Nickel in a Di(2-ethylhexyl)phosphoric Acid Supported Liquid Membrane Process. Journal of Membrane Science, 1993. 85: p. 157-166. 41. Bogacki, M.B., G. Cote and J. Szymanowski, Modeling of Nickel Extraction with Decanal Oxime. Separation Science and Technology, 1993. 28(9): p. 1783-1788. 42. Dimitrov, K., V. Rollet, A. Saboni and S. Alexandrova, Recovery of Nickel from Sulphate Media by Batch Pertraction in a Rotating Film Contactor Using Cyanex 302 as a Carrier. Chemical Engineering and Processing, 2008. 47: p. 1562-1566. 43. Kul, M. and U. Cetinkaya, Recovery of Nickel by Solvent Extraction from Electroplating Rinse Bath Solution. Solvent Extraction and Ion Exchange, 2010. 28(2): p. 225-243. 44. Venkateswaran, P., A.N. Gopalakrishnan and K. Palanivelu, Di(2-ethylhexyl)phosphoric Acid-Coconut Oil Supported Liquid Membrane for the Separation of Copper Ions from Copper Plating Wastewater. Journal of Environmental Science, 2007. 19(12): p. 1446-1453. 45. 李致諧, 貴重金屬回收程序探討. 國立台灣大學化學工程學研究所, 2007. 台北. 46. Redden, L.D. and R.D. Groves, The Extraction of Nickel with Aliphatic Oximes. Separation Science and Technology, 1993. 28: p. 201-225. 47. Lothongkum, A.W., Y. Khemglad, N. Usomboon and U. Pancharoen, Selective Recovery of Nickel Ions from Wastewater of Stainless Steel Industry via HFSLM. Journal of Alloys and Compounds, 2009. 476: p. 940-949. 48. 劉芳宇, 具分散反萃取相支撐式液膜穩定性之評估. 國立台灣大學化學工程學研究所, 2008. 台北. 49. Danesi, P.R., L. Reichleyyinger and P.G. Rickert, Lifetime of Supported Liquid Membranes - the Influence of Interfacial Properties, Chemical Composition and Water Transport on the Long-Term Stability of the Membranes. Journal of Membrane Science, 1987. 31(2-3): p. 117-145. 50. Kumar, S. and G.L. Tulasi, Aggregation vs. Breakup of the Organic Phase Complex. Hydrometallurgy, 2005. 78(1-2): p. 79-91. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47102 | - |
| dc.description.abstract | 在無電鍍鎳程序中,反應所剩餘的廢液,含有未完全反應的鎳離子,故回收具有價值的鎳離子(nickel),不但可減少汙染,亦可使之重回無電鍍鎳程序中使用。本研究之主要目標,在於開發出可用來回收水溶液中鎳離子的技術,並將其濃縮至可重回無電鍍中使用的濃度。主要以進料溶液模擬無電鍍鎳廢液的陰離子(硫酸根)而得,先以較低濃度的進料做為入門的參考,鎳離子濃度為1000 mg/L -3000 mg/L,其中以1000 mg/L做為研究的主軸。
研究中選擇以酸性萃取劑-二(2-乙基己基)磷酸(D2EHPA)為載體,以Isopar-L做為稀釋劑,首先以具分散反萃取相支撐式液膜來回收鎳離子。研究顯示程序中進料溶液的pH值原為6,在程序一進行進料溶液pH即遽降至2 - 3之間,利用0.6 M D2EHPA只能將進料溶液中的鎳離子由1000 mg/L降至700 mg/L左右,且耗時4小時,而在程序的50分鐘就可以萃取出200 mg/L左右,可知道在50分鐘之後萃取速率慢得多,探討pH值遽降的原因,並由觀察進料溶液的pH值變化,在計算了溶液中氫離子交換濃度後,可知萃取微量的鎳離子釋放出的氫離子可使pH下降速迅,了解到整個系統對pH值是相當敏感的,而選擇以碳酸鈉來提高進料溶液的pH值,使得萃取速率可以維持,並可有效將進料溶液中的鎳離子1000 mg/L完全萃取至有機相,甚至以鎳離子為3000 mg/L亦可以有效的完全萃取。 使用具分散式反萃取相支撐式液膜來回收鎳離子,反萃取相使用5 M H2SO4,期望能以硫酸來高度濃縮鎳離子,但在系統中發現,進料溶液鎳離子濃度為1000 mg/L,在加入鹼於進料溶液來提高pH值,使得程序能完全萃取進料溶液中的鎳離子,而反萃取相所得到的濃縮液,卻無法達到所期望的5倍濃縮,而反萃取濃縮液只濃縮3倍左右,值得探討鎳離子濃度不足以守恆之原因,推測為反萃取不易及水傳遞現象,以期找出方法或條件來提升濃縮效率,在降低了反萃取相的硫酸濃度可使濃縮效率上升,最後可得鎳離子濃縮倍率近5倍。 | zh_TW |
| dc.description.abstract | In terms of the residual wastewater contains no fully reacted nickel ions in electroless nickel process, recover the valuable nickel ions could not only reduce environmental pollution but also reuse them in electroless nickel process. The main purpose of this research is to develop a technique that could be used to recover nickel ions from an aqueous solution and concentrates them to be reusable in electroless nickel process. The feed solution contains 1000-3000 mg/L nickel ions (1000 mg/L, mainly) simulated electroless nickel wastewater of anions (sulfate).
In this process, we chose D2EHPA as extractant with diluent Isopar-L. At first, we recovered nickel ions by supported liquid membrane with strip dispersion (SLMSD). The feed solution pH value was 6. Once the process proceeded, the feed solution pH suddenly decreased to 2-3. By using 0.6 M D2EHPA extractant, the concentration of nickel ions could only be decreased from 1000 mg/L to about 700 mg/L in four hours operation. In the first 50 minutes the process could extract 200 mg/L nickel ions, after 50 minutes the extraction rate was much slower. We observed feed solution pH value decrease to calculate how the hydrogen ion exchange to aqueous solution and found out the reason why feed solution pH value decreased drastically was that the small volume hydrogen ions could let the feed solution pH value decreases drastically. We realized that the whole system is very sensitive to the pH value. We used sodium carbonate to increase the feed pH, the feed solution of nickel ions 1000 mg/L completely extracted to the organic phase. 3000 mg/L of nickel ions could also be effect for the complete extraction. We used the supported liquid membrane with strip dispersion to recover nickel ions and 5M H2SO4 aqueous solution as a strip. We expected to get highly concentrated nickel ions by using sulfuric acid, but we found that even though we could fully extract nickel ions via adding base into 1000mg/L concentration nickel ions feed solution to increase pH in the process, we could not meet stripping phase to 5 fold concentration (Actually, 3 fold or so). We conjectured the reasons that broke nickel ions concentration conservation were difficult to stripping and water transfer effect. We improved the efficiency by lower sulfuric acid concentration and results in higher recovery. Finally, we could approach nickel ions concentration to 5 fold. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:47:37Z (GMT). No. of bitstreams: 1 ntu-99-R97524085-1.pdf: 1959012 bytes, checksum: 987cc713086798f5bf013d9c25704fcc (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 第二章 文獻回顧 5 2-1 液液萃取 5 2-1-1 液液萃取的原理 5 2-1-2 物理萃取 7 2-1-3 化學萃取 8 2-1-3-1稀釋劑 8 2-1-3-2萃取劑 9 2-1-3-3修飾劑 20 2-1-4 反萃取相的配方選取 21 2-1-5 相乘萃取(Synergistic extraction) 21 2-1-6 影響萃取平衡的條件 22 2-1-6-1 進料pH值的影響 22 2-1-6-2 溫度的影響 22 2-1-6-3 萃取劑濃度的影響 23 2-1-6-4 水相組成的影響 23 2-1-6-5 稀釋劑的影響 23 2-2 液膜分離技術 25 2-2-1 液膜的傳送機制及原理 27 2-2-1-1簡單擴散傳送 29 2-2-1-2載體輔助傳送 29 2-2-2 液膜之型式 34 2-2-2-1乳化式液膜 35 2-2-2-2支撐式液膜 38 第三章 實驗理論 45 3-1 萃取平衡 45 3-2 支撐式液膜傳送速率的推導及測定 47 第四章 實驗方法 55 4-1 設備及儀器 55 4-2 實驗藥品 57 4-3 實驗步驟 58 4-3-1 溶劑萃取 58 4--3-1-1萃取反應 58 4--3-1-2反萃取反應 58 4-3-2 具分散反萃取相之支撐式液膜 60 4-3-3 薄膜萃取技術 62 第五章 結果與討論 65 5-1 具分散反萃取相支撐式液膜 67 5-1-1自硫酸系統中回收鎳離子 67 5-1-2系統中進料溶液pH值變化探討 73 5-1-2-1反萃取溶液滲漏 73 5-1-2-2萃取反應的氫離子交換 76 5-1-3維持系統進料溶液pH值 78 5-1-3-1氫氧化鈉 78 5-1-3-2碳酸鈉 80 5-1-3-3緩衝溶液 81 5-2 以碳酸鈉來提升系統萃取率 82 5-2-1具分散反萃取相支撐式液膜加碳酸鈉測試 82 5-2-2縮短萃取時間及加入碳酸鈉量的控制 86 5-2-3不同萃取劑濃度的影響 89 5-2-4 鎳離子濃縮程度之評估 93 5-3 反萃取回收率的探討 96 5-3-1 有機相鎳離子的殘留 97 5-3-1-1萃取劑濃度 97 5-3-1-2提高處理量 100 5-3-2 水傳遞的稀釋現象 103 5-3-3 不同濃度的反萃取相影響 111 第六章 結論 119 參考文獻 121 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鎳離子 | zh_TW |
| dc.subject | 具分散反萃取相支撐式液膜 | zh_TW |
| dc.subject | 水傳遞 | zh_TW |
| dc.subject | 碳酸鈉 | zh_TW |
| dc.subject | 二(2-乙基己基)磷酸 | zh_TW |
| dc.subject | 無電鍍鎳 | zh_TW |
| dc.subject | Sodium carbonate | en |
| dc.subject | water transfer | en |
| dc.subject | Nickel | en |
| dc.subject | Electroless nickel | en |
| dc.subject | D2EHPA | en |
| dc.subject | SLMSD | en |
| dc.title | 以具分散反萃取相支撐式液膜回收鎳離子之評估 | zh_TW |
| dc.title | Evaluation of Recovering Nickel Ions by Supported Liquid Membrane with Strip Dispersion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝學真,謝子陽 | |
| dc.subject.keyword | 鎳離子,無電鍍鎳,二(2-乙基己基)磷酸,具分散反萃取相支撐式液膜,碳酸鈉,水傳遞, | zh_TW |
| dc.subject.keyword | Nickel,Electroless nickel,D2EHPA,SLMSD,Sodium carbonate,water transfer, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
