Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4708
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤
dc.contributor.authorChieh Lienen
dc.contributor.author廉婕zh_TW
dc.date.accessioned2021-05-14T17:45:38Z-
dc.date.available2018-11-12
dc.date.available2021-05-14T17:45:38Z-
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-10-21
dc.identifier.citation王松永 (1983) 商用木材。中華林產事業協會。377 頁。
李培芬、林怡萱、聶嘉慧、李玉琪、曾維英(2003) 全民造林相關文件知識庫建
置。行政院農業委員會。232 頁。
卓志隆、黃姿文(2013) 熱處理對三種國產人工林木材物理性質之影響(III) –顏色
變化。林產工業32(4):203-212。
林曉洪、林盈宏(2011) 熱處理材之性質。林業研究季刊33(1):91–108。
姜笑梅、張立非、劉鵬 (1999) 拉丁美洲熱帶木材。中國林業出版社。334 頁。
馮豐隆、張愷玲、張鈞媛(2010) 大葉桃花心木的生物、生態與利用。生物科學
52(2):15–24。
劉業經、呂福原、歐辰雄(1994) 台灣樹木誌。國立中興大學農學院出版委員會。
992 頁。
蘇銘言、蘇桂瑢、溫怡文、劉怡佳(2004) 風中奇緣-桃花心木種子的傳播。科
學教育月刊272:10–22。
Bak, M. and R. Németh (2012) Changes in swelling properties moisture uptake rate of
oil-heat-treated poplar(populus Euramericana cv. Pannonia) wood.
BioResources 7(4):5128–5137.
Bekhta, P. and P. Niemz (2003) Effect of high temperature on the change in color,
dimensional stability and mechanical properties of spruce wood. Holzforschung
57(5):539–546.
Bertotti, G. and I. D. Mayergoyz (2005) The Science of Hysteresis. Academic Press.
2160pp.
Berotti, G. and I. Mayergoyz (2006) The science of hysteresis: mathematical
modeling and applications. Elsevier Inc. 749pp.
Bratasz, Ł., A. Kozłowska and R. Kozłowski (2012) Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation. European Journal of
Wood Products 70(4):455–451.
Bruno, M. E., and H. M. Pereira (2009) Wood modification by heat treatment: a
review. BioResources 4(1), 370–404.
Candelier, K., S. Hannouz, M. Elaieb, R. Colletl, S. Dumarcay, A. Petrissans, P.
Gerardin and M. Petrissans. (2015) Utilization of temperature kinetics as a
method to predict treatment intensity and corresponding treated wood quality:
durability and mechanical properties of thermally modified wood.
Maderas:Ciencia Y Tecnología 17(2):253–262.
Colom, X. and F. Carrillo (2002) Crystallinity changes in lyocell and viscose type
fibers by caustic treatment. European Polymer Journal 38(11):2225–2230.
Colom, X., F. Carrillo, F. Nogues and P. Garriga (2003) Structural analysis of
photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and
Stability 80(3):543–549.
Dubey, M. K., S. Pang and J.Walker (2012) Changes in chemistry, color, dimensional
stability and fungal resistance of Pinus radiata D. Don wood with oil heat–
treatment. Holzforschung 66(1):49–57.
Guller, B. (2012) Effects of heat treatment on density, dimensional stability and color
of Pinus nigra wood. African Journal of Biotechnology 11(9):2204–2209.
Hill, C. A.S. (2008) The reduction in the fibre saturation point of wood due to
chemical modification using anhydride reagents: A reappraisal. Holzforschung
62(4): 423–428.
Hill, C. A. S., A. J. Norton and G. Newman (2010) The water vapour sorption
properties of Sitka spruce determined using a dynamic vapour sorption apparatus.
Wood Science and Technology 44(3): 497–514.
Hill, C. A. S. (2011) Wood modification: an update. BioResources 6(2):918–919.
Homan,W., B. Tjeerdsma , E. Beckers and A. Jorissen (2000) Structural and other
properties of modified wood. Proceedings, 6th World Conference on Timber
Engineering, Whistler, Canada.
Kariz, M., M. K. Kuzman and M. Sernek (2013) Screw withdrawal and heat.
Bioresources 8(3):4340–4348.
Kitagawa, S., R. Kitaura and S. Noro (2004) Functional Porous Coordination
Polymers. Angewandte Chemie International Edition 43(18): 2334 –2375.
Kocaefe, D., S. Ponesak and Y. Boluk (2008). Thermal treatment of aspen,
BioResources 3(2):517–537.
Mohan, D., C. U. Pittman and P. H. Steele (2006) Pyrolysis of wood/biomass for
bio-oil: a critical review. Energy & Fuels 20(3):848–889.
Navi, P. and D. Sandberg (2012) Thermo-hydro-mechanical processing of wood. CRC
Press. 286pp.
Negreros-Castillo, P., L. K. Snook and C.W. Mize (2003) Regenerating mahogany
(Swietenia macrophylla) from seed in Quintana Roo, Mexico: the effects of
sowing method and clearing treatment. Forest Ecology and Management
183(1–3):351–362.
Okubayashi, S., U.J. Griesser and T. Bechtold (2004) A kinetic study of moisture
sorption and desorption on lyocell fibers. Carbohydrate Polymers 58(3): 293–
299.
Popescu, M. C., C. M. Popescu, G. Lisa, Y. Sakata (2011) Evaluation of
morphological and chemical aspects of different wood species by spectroscopy
and thermal methods. Journal of Molecular Structure 988(1–3):65–72.
Prothon, Frédéric and L. M. Ahrné (2004) Application of the Guggenheim, Anderson
and De Boer model to correlate water activity and moisture content during
osmotic dehydration of apples. Journal of Food Engineering 61(3):567–470.
Rahman, M. S. (2007) Food Preservation. CRC Press. 1088pp.
Ricardo, D. A. P., L. M. Roberto and E. P. Carmen (2011) Models of sorption
isotherms for food: uses and limitation. Vitae 18(3):325–334.
Rowell, R. M. (1984) The Chemistry of solid wood. American Chemical Society:
Washington, DC,. 411pp.
Rowell, R. M. and W. B. Banks (1985) Water repellency and dimensional stability of
wood. General Technical Report FPL-50. United States epartment of Agriculture,
Forest Products Laboratory. 24pp.
Schult, K. A. (1996) Techniques for measurement of water vapor sorption and
permeation in polymer films. Journal of Applied Polymer Science 61:1865–
1876.
Stamm, A. J. (1956) Thermal degradation of wood and cellulose. Industrial and
Engineering Chemistry 48(3):413–417.
Timmermann, E. O. (2003) Multilayer sorption parameters: BET or GAB values?
Colloids and Surfaces A: Physicochemical and Engineering Aspects 220(1–
3):235–260.
Tuong,V. M. and J. Li (2010) Heat-treated acacia hybrid wood. BioResources
5(2):1257–1267.
Vernois, M. (2001) Heat treatment of wood in France - state of the art. Proceedings,
Review on heat treatments wood. Antibes, France.
Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqérol
and T. Siemieniewska (1985) Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and porosity. Pure and
Applied Chemistry 57(4):603–619.
Korkut, S., and M. Budakci (2010) The effects of high-temperature heat-treatment on
physical properties and surface roughness of rowan(Sourbus aucuparia L.) wood.Wood Research 55(1):67–78.
ThermoWood® Handbook (2003) Finnish ThermoWood Association. 66pp.
Walker, J. C. F., B. G. Butterfield, J. M. Harris, T. A. G. Langrish, J. M. Uprichard
(1993) Primary wood processing: principles and practice. Springer Netherlands.
595pp.
Wood Handbook (2010) Wood handbook—Wood as an engineering material. Forest
Products Laboratory. 508pp.
Xie, Y., C. A. S. Hill, Z. Xiao, C. Mai and H. Militz (2011) Dynamic water vapour
sorption properties of wood treated with glutaraldehyde. Wood Science and
Technologe 45(1): 49–61.
Yildiz, S. and E. Gümüşkaya (2007) The effects of thermal modification on crystalline
structure of cellulose in soft and hardwood. Building and Environment 42(1):62–
67.
Zaihan, J., C. A.S. Hill, H.W. Samsi, H. Husain and Y. Xie (2010) Analysis of water
vapour sorption of oleo-thermal modified wood of Acacia mangium and
Endospermum malaccense by a parallel exponential kinetics model and
according to the Hailwood-Horrobin model. Holzforschung 64(6):763–770.
Zapata, J. E. M., C. O. A. Quintero and B. L. D. Porras (2014) Sorption isotherms for
oat flakes (Avena sativa L.). Agronomía Colombiana 32(1):52–58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4708-
dc.description.abstract本研究以 170、190、210 ºC 熱處理1 h 與未處理之大葉桃花心木(Swietenia macrophylla)為材料,用色差計量測,探討L*(明暗值)、a*(紅綠值)、b*(黃藍值),以及ΔE (色差值)受熱處理影響之變化;以FTIR(Fourier transform infrared spectroscope)量測其吸收光譜,觀察試材受熱處理影響其吸收光譜特性之改變;另以DVS(Dynamic vapor sorption,動態水分吸附儀)精測試材於吸濕及脫濕程序下之遲滯曲線差異及吸脫濕特性(Hygroscopic Properties);末以GAB(Guggenheim
-Anderson-de Boer)模型分析遲滯曲線特性,以及PEK(parallel exponential kinetics)模型擬合試驗吸脫濕動能曲線,並以數值方法分析試材內部吸脫濕特性。
顏色量測結果為 L*、a*、b*皆隨熱處理溫度上升及熱處理溫度而下降,而ΔE 隨熱處理溫度上升而增加,表示試材受熱處理後,顏色偏暗、偏綠、偏藍,以及色差值增加。
FT-IR 光譜結果為隨熱處理溫度上升,特徵頻帶1743 cm-1 吸收特性降低,1513 cm-1 吸收特性增加表示半纖維素的降解以及木質素相對含量增加。1503cm-1 與1106 cm-1 峰面積值隨處理溫度升高而增加,新的木質素交聯可導致水吸收減少,同時也表示木材收縮與膨潤的降低。且1335 cm-1 與1316 cm-1 的雙峰比值隨熱處理溫度升高而上升,表示纖維素非結晶區經熱處理後降解。
動態水分吸附法之結果顯示,在相同相對濕度(Relative moisture, RH)下之平衡含水率(Equilibrium moisture content, EMC)隨熱處理溫度升高而較低,EMC 明顯於熱處理後降低,表示吸濕性隨熱處理溫度上升而明顯下降。比較樹種或是處理方法之差異無反映在逐步吸脫濕程序下之EMC、帄衡時間與吸脫濕速率上,而是反映在數值尺度上。吸脫濕程序之遲滯曲線結果可知,其最高EMC 於未處理及熱處理170、190、210 ºC 分別為18.85、18.81、17.44 及14.04 %,表示最大EMC 與熱處理溫度有負相關性。
以 GAB 分析遲滯曲線數值結果顯示,經過熱處理後單層水之總容積皆隨熱處理溫度升高而下降,分別為0.04697、0.04864、0.04314 及0.03372 (cm3/g),且單層水吸收特定表面積也具類似趨勢,分別為179、185、164 及129 (m2/g),隨處理溫度升高而降低。
以 PEK 模型擬合分析吸濕動能曲線之結果為,吸濕程序中,多數情況為代表木材中單層結合水之快速曲線所達帄衡值,高於代表木材多層結合水之緩慢曲線所達帄衡值;脫濕程序中,快速曲線則與緩慢曲線相差不多。吸濕程序中含水率上升總和(快速/緩慢)在未處理、以170、190、210 ºC 熱處理樣本分別為21.14( 4.98 / 16.16)、20.69( 6.03 / 14.66)、18.22 ( 4.57 / 13.65) 、14.27 ( 2.89 / 11.38) (%),
與DVS 於吸濕程序中95 %RH 時之樣本含水率18.85、18.10、17.44、14.04 (%)有相近結果,因此擬合總值具參考價值。
zh_TW
dc.description.abstractThe wood dealt with in this work is Swietenia macrophylla, with four groups:untreated (control), heat treated by 170 ºC, 190 ºC and 210 ºC for 1 h. The color changes were determined by the color meter and showed that L*, a* and b* were all decrease when heat-treated at higher temperatures. ΔE is also shown to increase when heat-treated at higher temperatures. Results show that after heat treatment the samples all darken and change to greenish and bluish tints.
Analysis using the FTIR (Fourier transform infrared spectroscope) spectra showsthe chemical changes after heat treatment. When treated, there is found a decrease at the 1743 cm-1 mark peak, and an increase at the1513 cm-1 mark peak, meaning there is a degradation of hemicellulose causing the relative content of lignin to increase. The peak areas of 1503 cm-1 and 1106 cm-1 both increase when treated, showing the
new formation of cross-link of lignin and causing a decrement of shrinkage and swelling in the treated sample. On the other hand, the ratios of the 1335 cm-1 and 1316 cm-1 peaks represent a degradation in the amorphous region of the treated sample.
The DVS (Dynamic vapor sorption) can be used to analyze the sorption properties of water of materials. The results of DVS (Dynamic vapor sorption) show that the EMC (Equilibrium moisture content) and equilibrium time decrease when treated. There is no significant difference in the equilibrium rate when treated. The highest EMC in untreated, treated at 170 ºC, 190 ºC and 210 ºC are 18.85, 18.81, 17.44 and 14.04 %, respectively. Which gives a negative correlation between the
heat-treated temperature and the highest EMC.
Numerical analysis of the hysteresis loop via the GAB
model(Guggenheim-Anderson-de Boer) shows that the volume of adsorbed water of dry wood (untreated – 0.04697, 170 ºC – 0.04864, 190 ºC – 0.04314, 210 ºC – 0.03372 cm3 /g) decreases when treated, as does the monolayer capacity. (untreated –179, 170 ºC – 185, 190 ºC – 164, 210 ºC – 129 m2 /g) In Curve fitting all the experimental data of adsorption and desorption kinetics curves, and plotting the parameters for division into the fast and slow curves by using the PEK (parallel exponential kinetics) model. The results shows that the fast curve, which represents the monolayer of water in the woods internal surface, is higher than the slow curve, which represents the multilayer of water in the woods external surface, in adsorption. It is also shown that the fast curve is much closer to the slow curve for the desorption process.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:45:38Z (GMT). No. of bitstreams: 1
ntu-104-R01625036-1.pdf: 3210681 bytes, checksum: 52a4d31af71f8edb6ac5e93d0ee5ce62 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書……….………………………………………………….………..i
誌謝…………………………….…………………………………………….……….ii
中文摘要………………….………………………………………………….………iii
Abstract…………...…………………………………….…………..………………..vi
目錄…………………………….…………………………………………………….ix
圖目錄………………………………………………………………………………. .xi
表目錄…………………………………………………………………………....…xvii
第一章 前言................................................................................................................1
第二章 文獻回顧........................................................................................................3
2.1 大葉桃花心木...............................................................................................3
2.1.1 大葉桃花心木基本資料....................................................................3
2.1.2 大葉桃花心木用途............................................................................4
2.1.3 大葉桃花心木木材性質....................................................................5
2.1.4 大葉桃花心木造林面積....................................................................6
2.2 木材改質.......................................................................................................7
2.2.1 木材改質原理....................................................................................7
2.2.2 物理性木材改質–熱處理..................................................................8
2.2.3 熱處理材之化學變化......................................................................13
2.2.4 傅立葉紅外線光譜分析..................................................................18
2.3 木材之遲滯現象.........................................................................................25
2.3.1 木材遲滯現象原理探討..................................................................25
2.3.2 木材遲滯現象研究方法–一般傳統方法........................................27
2.3.3 木材遲滯現象研究方法–動態水分吸附法....................................27
2.4 模型分析.......................................................................................................39
2.4.1 遲滯曲線之模型分析–GAB 模型....................................................39
2.4.2 動態水份吸附結果之模型分析–PEK 模型......................................41
第三章 材料與方法..................................................................................................43
3.1 試驗材料基本性質及前處理.....................................................................43
3.1.1 破碎前處理......................................................................................43
3.1.2 熱處理..............................................................................................43
3.1.3 熱處理收率......................................................................................44
3.1.4 色差值..............................................................................................45
3.1.5 傅立葉紅外線光譜分析..................................................................46
3.2 動態水分蒸氣吸附儀.................................................................................47
3.3 實驗流程圖.................................................................................................47
第四章 結果與討論..................................................................................................49
4.1 熱處理之收率.............................................................................................49
4.2 熱處理色差值.............................................................................................49
4.3 傅立葉紅外線光譜儀.................................................................................51
4.4 動態水分吸附法特性分析.........................................................................55
4.5 動態水分吸附數值分析–以GAB 模型分析............................................69
4.6 動態水分吸附數值分析–以PEK 模型分析.............................................73
第五章 結論..............................................................................................................80
參考文獻......................................................................................................................82
附錄..............................................................................................................................87
dc.language.isozh-TW
dc.subject傅立葉遠紅外線光譜zh_TW
dc.subject動態水分析吸附法zh_TW
dc.subject遲滯曲線zh_TW
dc.subject熱處理zh_TW
dc.subject色差zh_TW
dc.subjectHeat Treatmenten
dc.subjectDynamic Vapor Sorptionen
dc.subjectFTIRen
dc.subjectColor Differenceen
dc.subjectHysteresis Loopen
dc.title以動態水分吸附法探討熱處理材吸脫濕之遲滯性質zh_TW
dc.titleStudy on Hygroscopic Hysteresis Properties of Heat
TreatedWood by Dynamic Vapor Sorption Method
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.coadvisor張豐丞
dc.contributor.oralexamcommittee羅盛峰,葉汀峰
dc.subject.keyword動態水分析吸附法,遲滯曲線,熱處理,色差,傅立葉遠紅外線光譜,zh_TW
dc.subject.keywordDynamic Vapor Sorption,Hysteresis Loop,Heat Treatment,Color Difference,FTIR,en
dc.relation.page95
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-10-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf3.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved