Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀
dc.contributor.authorWei-Di Linen
dc.contributor.author林維迪zh_TW
dc.date.accessioned2021-06-15T05:47:11Z-
dc.date.available2012-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation[1] G. Song and Y. Li, “Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks,” IEEE Communications Magazine, vol. 43, no. 12, pp. 127 – 134, 2005.
[2] S. Sampei and H. Harada, “System design issues and performance evaluations for adaptive modulation in new wireless access systems,” Proceedings of the IEEE, vol. 95, no. 12, pp. 2456–2471, 2007.
[3] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proceedings of the 12th annual international conference on Mobile computing and networking, MobiCom ’06, pp. 146–157, ACM, 2006.
[4] J. Huang, Z. Li, M. Chiang, and A. Katsaggelos, “Joint source adaptation and resource allocation for multi-user wireless video streaming,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, pp. 582 –595, May 2008.
[5] H. Ha, C. Yim, and Y. Kim, “Cross-layer multiuser resource allocation for video communication over OFDM networks,” Comput. Commun., vol. 31, pp. 3553–3563, September 2008.
[6] Vassilaras and Spyridon, “A cross-layer optimized adaptive modulation and coding scheme for transmission of streaming media over wireless links,” Wireless Networks, vol. 16, pp. 903–914, May 2010.
[7] M. Loiacono, J. Johnson, J. Rosca, and W. Trappe, “Cross-layer link adaptation for wireless video,” in IEEE International Conference on Communications, pp. 1–6, May 2010.
[8] P. Ferre, J. Chung-How, D. Bull, and A. Nix, “Distortion-based link adaptation for wireless video transmission,” EURASIP Journal on Advances in Signal Processing, 2008.
[9] C. Wong, R. Cheng, K. Lataief, and R. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1747 –1758, Oct. 1999.
[10] W. Rhee and J. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” in IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, pp. 1085 –1089 vol.2, 2000.
[11] H. Adibah Mohd Ramli, K. Sandrasegaran, R. Basukala, R. Patachaianand, M. Xue, and C.-C. Lin, “Resource allocation technique for video streaming applications in the LTE system,” in 2010 19th Annual Wireless and Optical Communications Conference (WOCC), pp. 1 –5, May 2010.
[12] J. Kim, J. Cho, and H. Shin, “Layered resource allocation for video broadcasts over wireless networks,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 1609 –1616, november 2008.
[13] P. Li, H. Zhang, B. Zhao, and S. Rangarajan, “Scalable video multicast with joint layer resource allocation in broadband wireless networks,” in 18th IEEE International Conference on Network Protocols (ICNP), pp. 295 –304, oct. 2010.
[14] J. Kim, J. Cho, and H. Shin, “Resource allocation for scalable video broadcast in wireless cellular networks,” in IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, vol. 2, pp. 174 – 180 Vol. 2, aug. 2005.
[15] “Amendment to IEEE standard for local and metropolitan area networks - part 16: Air interface for fixed broadband wireless access systems - physical and medium access control layers for combined fixed and mobile operation in licensed bands,” IEEE Std 802.16e-2005, Dec 2005.
[16] M. Tran, G. Zaggoulos, A. Nix, and A. Doufexi, “Mobile WiMAX: Performance analysis and comparison with experimental results,” in IEEE 68th Vehicular Technology Conference, pp. 1 –5, sept. 2008.
[17] Z. He, J. Cai, and C. Chen, “Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding,” IEEE Transactions on Circuits Syst. Video Technol, vol. 12, pp. 511–523, 2002.
[18] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 1012 –1032, June 2000.
[19] R. Zhang, S. Regunathan, and K. Rose, “Video coding with optimal inter/intramode switching for packet loss resilience,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 966–976, June 2000.
[20] Y. Wang, Z. Wu, and J. Boyce, “Modeling of transmission-loss-induced distortion in decoded video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 6, pp. 716–732, 2006.
[21] C. Zhang, H. Yang, S. Yu, and X. Yang, “GOP-level transmission distortion modeling for mobile streaming video,” Image Commun., vol. 23, pp. 116–126, February 2008.
[22] P. Baccichet, S. Rane, A. Chimienti, and B. Girod, “Robust low-delay video transmission using H.264/AVC redundant slices and flexible macroblock ordering,” in IEEE International Conference on Image Processing, vol. 4, pp. IV–93 – IV–96, 2007.
[23] L. Zhou, M. Chen, Z. Yu, J. Rodrigues, and H.-C. Chao, “Cross-layer wireless video adaptation: Tradeoff between distortion and delay,” Comput. Commun., vol. 33, pp. 1615–1622, September 2010.
[24] S. Pudlewski and T. Melodia, “A distortion-minimizing rate controller for wireless multimedia sensor networks,” Computer Communications, vol. 33, no. 12, pp. 1380–1390, 2010.
[25] T. Kwon and D. Cho, “Adaptive-modulation-and-coding-based transmission of control messages for resource allocation in mobile communication systems,” IEEE Transactions on Vehicular Technology, vol. 58, pp. 2769 –2782, july 2009.
[26] Q. Liu, X. Wang, and G. Giannakis, “A cross-layer scheduling algorithm with QoS support in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 55, pp. 839–847, May 2006.
[27] Q. Liu, S. Zhou, and G. Giannakis, “Queuing with adaptive modulation and coding over wireless links: cross-layer analysis and design,” IEEE Transactions on Wireless Communications, vol. 4, pp. 1142–1153, May 2005.
[28] Q. Liu, G. Giannaki, and S. Zhou, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links,” IEEE Transactions on Wireless Communications, vol. 3, no. 5, pp. 1746–1755, 2004.
[29] J. Noh and S. Oh, “Distributed SC-FDMA resource allocation algorithm based on the hungarian method,” in 2009 IEEE 70th Vehicular Technology Conference Fall, pp. 1 –5, sept. 2009.
[30] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistic Quarterly, vol. 2, pp. 83–97, 1955.
[31] J. A. Bondy, Graph Theory With Applications. Elsevier Science Ltd, 1976.
[32] C. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1982.
[33] S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations. Wiley-Interscience series in discrete mathematics and optimization, J. Wiley & Sons, 1990.
[34] R. Colda, T. Palade, E. Pucshita, A. Moldovan, and I. Vermecan, “PER-based analysis of a mobile WiMAX system,” in 2010 18th International Conference on Microwave Radar and Wireless Communications (MIKON), pp. 1 –4, june 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47086-
dc.description.abstract在本論文中,我們研究在下行 OFDMA 網路中以最佳化視訊品質為目標之資源分配問題。為了更有效率地使用資源,OFDMA 網路提供了彈性的動態調變編碼技術,讓基地台可以根據使用者的通道品質及傳輸需求,提供不同調變編碼模式之傳輸。傳統上的作法,大多分開處理資源分配及調變編碼模式的決策,而沒有考慮調變編碼模式對於視訊品質之影響。為了解決這個問題,本論文研究如何在有限的資源下,同時找出最適當的資源分配以及相對應最佳的調變編碼模式,以讓整體使用者的視訊品質有最好的表現。由於這個問題的求解複雜度過高,為了達到即時壓縮與傳輸視訊串流之目的,我們提出了一個基於匈牙利演算法(Hungarian algorithm)的解法,能在多項式時間內算出最佳或接近最佳的分配方式。首先,我們找出每位使用者在每個頻道上最佳的調變編碼模式。接著根據當下的通道品質,利用匈牙利演算法決定每位使用者最佳的頻道及調變編碼模式。對於未分配之頻道,我們循序地將其分配給能夠提高最多視訊品質的使用者。然而,經由此進一步的分配過程,原先最佳的調變編碼模式可能不再適用。此時透過我們預先設計的視訊品質門檻,演算法會自動的調整調變編碼模式,以達到視訊品質的提升。從實驗結果的分析中可得知,比起傳統作法我們的演算法最多僅需要增加 1.3% 的運算量,在不同的視訊上可得到 3%-13% 的增益。對於較為靜態之視訊,訊號品質較不佳的使用者最多可以達到 230% 的增益;反之,對於較為動態之視訊,訊號品質較佳的使用者最多亦可以達到 220% 的增益。zh_TW
dc.description.abstractIn the thesis, we investigate a distortion-optimized resource allocation scheme for downlink video transmission over multiuser Orthogonal Frequency-Division Multiple Access (OFDMA) networks. Video distortion in wireless networks is mostly caused by rate-controlled source coding and transmission errors due to packet losses. Both distortions are results from the selection of modulation and coding schemes (MCSs), each providing different throughput and reliability levels. Therefore, it is important to select appropriate MCS to determine the optimal resource allocation among users. To proceed, we formulate the resource allocation problem as a distortion minimization problem by joint consideration of sub-channel assignment and MCS selection, subject to the constraints of limited system resources. To solve the formulated problem, MCS for each user on each sub-channel is first determined that induces the least distortion. We then apply the Hungarian algorithm to optimally assign the subchannels for users with their channel conditions accordingly. As a result, the proposed algorithm distributes the remnant sub-channels sequentially to the user with the most reduction in distortion. During the process of remnant sub-channels allocation, the MCS selected initially may become unsuitable and is dynamically switched to a more appropriate one to meet the designated distortion threshold. Simulation results show that with at most 1.3% increase in the computational cost, the proposed algorithm achieves performance gain by 3%-13% in general and 16%-55% for users with SNRs which a better solution is obtained by joint consideration, compared to the resource allocation scheme without joint consideration of MCS.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:47:11Z (GMT). No. of bitstreams: 1
ntu-100-R98942112-1.pdf: 1968542 bytes, checksum: 7a0fdfdc4d60f494a8abd00bf2a8764d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsABSTRACT ii
CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
Chapter 1 INTRODUCTION 1
Chapter 2 BACKGROUND AND MOTIVATION 3
2.1 OFDMA Sub-Channelization 3
2.2 Adaptive Modulation and Coding 4
2.3 Related Work 6
2.4 Motivation 7
Chapter 3 AN DISTORTION-OPTIMIZED FRAMEWORK FOR RESOURCE ALLOCATION 9
3.1 Video Transmission Model 12
3.1.1 Encoder Distortion Model 12
3.1.2 Channel Distortion Model 13
3.1.3 Model Validation 14
3.2 Estimation of the Packet Error Rate 14
3.2.1 AMC Design at the Physical Layer 17
3.3 Problem Formulation 18
3.3.1 Objective Function 21
Chapter 4 SOLVING THE OPTIMIZATION PROBLEM 23
4.1 Heavy Load Case 23
4.1.1 The Hungarian algorithm 27
4.2 Light Load Case 29
4.2.1 Hardness Result 29
4.2.2 Proposed Algorithm 30
Chapter 5 ANALYSIS AND EXPERIMENTAL RESULT 35
5.1 Evaluation Setup 35
5.1.1 Video sequence and variable test parameters 37
5.2 Impact of MCS Selection 39
5.2.1 Different Behaviors Between Both Frameworks 42
5.3 Performance Analysis 48
5.3.1 Heavy Load Case 49
5.3.2 Light Load Case 56
5.4 Optimality Analysis 61
5.5 Fairness Issue 64
Chapter 6 CONCLUSION AND FUTURE WORK 70
REFERENCES 71
dc.language.isoen
dc.subject最佳化zh_TW
dc.subject資源分配zh_TW
dc.subject調變編碼模式zh_TW
dc.subject視訊串流zh_TW
dc.subjectmodulation and coding schemeen
dc.subjectresource allocationen
dc.subjectoptimizationen
dc.subjectvideo streamingen
dc.titleOFDMA 網路下結合資源分配及調變編碼模式之視訊品質最佳化zh_TW
dc.titleJoint Optimization of Resource Allocation and Modulation/Coding Schemes for Video Streaming in OFDMA Networksen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉丙成,高榮鴻,周俊廷
dc.subject.keyword最佳化,視訊串流,調變編碼模式,資源分配,zh_TW
dc.subject.keywordoptimization,video streaming,modulation and coding scheme,resource allocation,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved