請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47078
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝之真 | |
dc.contributor.author | Jui-Fu Hsu | en |
dc.contributor.author | 徐睿甫 | zh_TW |
dc.date.accessioned | 2021-06-15T05:46:58Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | 1. 王崇人,神奇的奈米科學,科學發展,第345期,民國91年,48–51頁。
2. 黃景弘,四氧化三鐵奈米粒子之合成及應用研究,碩士論文,國立臺灣大學化學研究所,民國96年。 3. A. M. Smith, H. Duan, A. M. Mohs, S. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Advanced Drug Delivery Reviews 60 (2008) 1226–1240. 4. P. Juzenas, W. Chen, Y. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Advanced Drug Delivery Reviews 60 (2008) 1600–1614. 5. 林國欽,表面修飾及功能性包覆之硒化鎘�硫化鋅奈米量子點穩定性研究,碩士論文,國立成功大學工程科學研究所,民國95年。 6. T. Kippeny, L. A. Swafford, S. J. Rosenthal, Semiconductor nanocrystals: A powerful visual aid for introducing the particle in a box, Journal of Chemical Education 79 (2002) 1094–1100. 7. M. Han, X. Gao, J. Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology 19 (2001) 631–635. 8. A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (1996) 933–937. 9. D. Crouch, S. Norager, P. O’Brien, J. Park, N. Pickett, New synthetic routes for quantum dots, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 361 (2003) 297–310. 10. P. Bhattacharya, S. Ghosh, A. D. Stiff-Roberts, Quantum dot opto-electronic devices, Annual Review of Materials Research 34 (2004) 1–40. 11. C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, Journal of the American Chemical Society 115 (1993) 8706–8715. 12. S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner, C. S. Yun, Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials, Chemistry of Materials 14 (2002) 1576–1584. 13. E. Rabani, Structure and electrostatic properties of passivated CdSe nanocrystals, Journal of Chemical Physics 115 (2001) 1493–1497. 14. Z. A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, Journal of the American Chemical Society 123 (2001) 183–184. 15. A. Mews, A. Eychmuller, M. Giersig, D. Schooss, H. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS, Journal of Physical Chemistry 98 (1994) 934–941. 16. D. Schooss, A. Mews, A. Eychmüller, H. Weller, Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment, Physical Review B: Condensed Matter 49 (1994) 17072–17078. 17. Y. Ebenstein, T. Mokari, U. Banin, Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy, Applied Physics Letters 80 (2002) 4033–4035. 18. M. A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, Journal of Physical Chemistry 100 (1996) 468–471. 19. W. C. W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281 (1998) 2016–2018. 20. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein, Journal of the American Chemical Society 122 (2000) 12142–12150. 21. G. P. Mitchell, C. A. Mirkin, R. L. Letsinger, Programmed assembly of DNA functionalized quantum dots, Journal of the American Chemical Society 121 (1999) 8122–8123. 22. E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, G. P. Anderson, Avidin: A natural bridge for quantum dot-antibody conjugates, Journal of the American Chemical Society 124 (2002) 6378–6382. 23. H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, H. Mattoussi, Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores, Journal of the American Chemical Society 127 (2005) 3870–3878. 24. A. Sukhanova, J. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J. H. M. Cohen, I. Nabiev, Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells, Analytical Biochemistry 324 (2004) 60–67. 25. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, A. P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, Journal of Physical Chemistry B 105 (2001) 8861–8871. 26. W. W. Yu, E. Chang, J. C. Falkner, J. Zhang, A. M. Al-Somali, C. M. Sayes, J. Johns, R. Drezek, V. L. Colvin, Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers, Journal of the American Chemical Society 129 (2007) 2871–2879. 27. C. Luccardini, C. Tribet, F. Vial, V. Marchi-Artzner, M. Dahan, Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule, Langmuir 22 (2006) 2304–2310. 28. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science 298 (2002) 1759–1762. 29. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rdler, G. Natile, W. J. Parak, Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals, Nano Letters 4 (2004) 703–707. 30. F. Osaki, T. Kanamori, S. Sando, T. Sera, Y. Aoyama, A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region, Journal of the American Chemical Society 126 (2004) 6520–6521. 31. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology 22 (2004) 969–976. 32. C. Wang, Y. Hsu, C. Peng, Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents, Biosensors and Bioelectronics 24 (2008) 1018–1025. 33. C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, W. J. Parak, Design of an amphiphilic polymer for nanoparticle coating and functionalization, Small 4 (2008) 334–341. 34. R. E. Anderson, W. C. W. Chan, Systematic investigation of preparing biocompatible, single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers, ACS Nano 2 (2008) 1341–1352. 35. W. W. Yu, E. Chang, R. Drezek, V. L. Colvin, Water-soluble quantum dots for biomedical applications, Biochemical and Biophysical Research Communications 348 (2006) 781–786. 36. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials 4 (2005) 435–446. 37. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Current Opinion in Biotechnology 13 (2002) 40–46. 38. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. -J. Eisler, M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290 (2000) 314–317. 39. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Electroluminescence from CdSe quantum-dot/polymer composites, Applied Physics Letters 66 (1995) 1316–1318. 40. C. Wang, M. Shim, P. Guyot-Sionnest, Electrochromic nanocrystal quantum dots, Science 291 (2001) 2390–2392. 41. S. Coe, W. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420 (2002) 800–803. 42. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281 (1998) 2013–2016. 43. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nature Biotechnology 21 (2003) 41–46. 44. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnology 21 (2003) 47–51. 45. X. Gao, S. Nie, Molecular profiling of single cells and tissue specimens with quantum dots, TRENDS in Biotechnology 21 (2003) 371–373. 46. D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, T. M. Jovin, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nature Biotechnology 22 (2004) 198–203. 47. S. Pathak, S. Choi, N. Arnheim, M. E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization, Journal of the American Chemical Society 123 (2001) 4103–4104. 48. A. Hoshino, K. Hanaki, K. Suzuki, K. Yamamoto, Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochemical and Biophysical Research Communications 314 (2004) 46–53. 49. M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti, Nanocrystal targeting in vivo, Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 12617–12621. 50. A. M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots, Analyst 129 (2004) 672–677. 51. M. N. V. R. Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers 46 (2000) 1–27. 52. A. Tolaimate, J. Desbrières, M. Rhazi, A. Alagui, M. Vincendond, P. Vottero, On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin, Polymer 41 (2000) 2463–2469. 53. 林怡君,以酵素法產製之幾丁聚醣水解物特性及其抗菌活性之研究,碩士論文,國立宜蘭大學食品科學系,民國96年。 54. J. Liu, S. Tian, X. Meng, Y. Xu, Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit, Postharvest Biology and Technology 44 (2007) 300–306. 55. C. Qin, B. Zhou, L. Zeng, Z. Zhang, Y. Liu, Y. Du, L. Xiao, The physicochemical properties and antitumor activity of cellulase- treated chitosan, Food Chemistry 84 (2004) 107–115. 56. S. Kim, N. Rajapakse, Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review, Carbohydrate Polymers 62 (2005) 357–368. 57. S. Roller, N. Covill, The antifungal properties of chitosan in laboratory media and apple juice, International Journal of Food Microbiology 47 (1999) 67–77. 58. Y. Chen, C. Wang, C. Chang, C. Peng, In situ formation of viruses tagged with quantum dots, Integrative Biology 2 (2010) 258–264. 59. K. K. Stern, E. A. Foegeding, A. P. Hansen, Inhibition of lipolytic activity in milk by polysaccharides, Journal of Dairy Science 71 (1988) 41–45. 60. D. K. Sarker, P. J. Wilde, Restoration of protein foam stability through electrostatic propylene glycol alginate-mediated protein–protein interactions, Colloids and Surfaces B: Biointerfaces 15 (1999) 203–213. 61. A. Paraskevopoulou, D. Boskou, V. Kiosseoglou, Stabilization of olive oil – lemon juice emulsion with polysaccharides, Food Chemistry 90 (2005) 627–634. 62. X. Xue, J. Pan, H. Xie, J. Wang, S. Zhang, Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria, Talanta 77 (2009) 1808–1813. 63. C. March, J. J. Manclús, A. Abad, A. Navarro, A. Montoya, Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera, Journal of Immunological Methods 303 (2005) 92–104. 64. F. Salinas, D. Garrido, A. Ganga, G. Veliz, C. Martínez, Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine, Food Microbiology 26 (2009) 328–332. 65. P. M. St. John, R. Davis, N. Cady, J. Czajka, C. A. Batt, H. G. Craighead, Diffraction-based cell detection using a microcontact printed antibody grating, Analytical Chemistry 70 (1998) 1108–1111. 66. T. S. Gunasekera, P. V. Attfield, D. A. Veal, A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Applied and Environmental Microbiology 66 (2000), 1228–1232. 67. L. M. Scolaro, M. Castriciano, A. Romeo, S. Patanè, E. Cefalì, M. Allegrini, Aggregation behavior of protoporphyrin IX in aqueous solutions: Clear evidence of vesicle formation, Journal of Physical Chemistry B 106 (2002) 2453–2459. 68. S. Santra, B. Liesenfeld, C. Bertolino, D. Dutta, Z. Cao, W. Tan, B. M. Moudgil, R. A. Mericle, Fluorescence lifetime measurements to determine the core–shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability, Journal of Luminescence 117 (2006) 75–82. 69. X. Zhao, L. R. Hilliard, S. J. Mechery, Y. Wang, R. P. Bagwe, S. Jin, W. Tan, A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15027–15032. 70. X. Fu, K. Huang, S. Liu, A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels, Journal of Microbiological Methods 79 (2009) 367–370. 71. G. Huang, C. Chen, K. Wu, M. O. Ahmed, P. Chou, One-pot synthesis and characterization of high-quality CdSe/ZnX (X=S, Se) nanocrystals via the CdO precursor, Journal of Crystal Growth 265 (2004) 250–259. 72. W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chemistry of Materials 15 (2003) 2854–2860. 73. J. Georges, N. Arnaud, L. Parise, Limitations arising from optical saturation in fluorescence and thermal lens spectrometries using pulsed laser excitation: Application to the determination of the fluorescence quantum yield of rhodamine 6G, Applied Spectroscopy 50 (1996) 1505–1511. 74. I. M. N. Vold, B. E. Christensen, Periodate oxidation of chitosans with different chemical compositions, Carbohydrate Research 340 (2005) 679–684. 75. A. Hirai, H. Odani, A. Nakajima, Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy, Polymer Bulletin 26 (1991) 87–94. 76. S. Prochazkova, K. M. Vårum, K. Østgaard, Quantitative determination of chitosans by ninhydrin, Carbohydrate Polymers 38 (1999) 115–122. 77. S. Moore, Amino acid analysis: Aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction, The Journal of Biological Chemistry 243 (1968) 6281–6283. 78. G. T. Hermanson, Bioconjugate Techniques, Academic Press (1996), pp 170-173. 79. G. T. Hermanson, Bioconjugate Techniques, Academic Press (1996), pp 185-186. 80. C. J. Gray, A. J. Griffiths, D. L. Stevenson, J. F. Kennedy, Studies on the chemical stability of propylene glycol alginate esters, Carbohydrate Polymers 12 (1990) 419–430. 81. Y. Wang, L. Liu, Q. Jiang, Q. Zhang, Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin, European Polymer Journal 43 (2007) 43–51. 82. M. Kubota, T. Nakabayashi, Y. Matsumoto, T. Shiomi, Y. Yamada, K. Ino, H. Yamanokuchi, M. Matsui, T. Tsunoda, F. Mizukami, K. Sakaguchi, Selective adsorption of bacterial cells onto zeolites, Colloids and Surfaces B: Biointerfaces 64 (2008) 88–97. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47078 | - |
dc.description.abstract | 量子點 (QD) 擁有傳統有機染料與螢光蛋白所沒有之敏感性與穩定性,在科學和技術上有其特殊的優勢。在生物醫學領域,量子點已逐漸被應用於生物分子螢光標示、DNA鑑定與疾病診斷上。在本研究中,先用過碘酸鈉 (NaIO4) 氧化幾丁聚醣而得到醛基化幾丁聚醣。接著在醛基化幾丁聚醣上鍵結直鏈烷基胺,進而合成具有疏水和親水端的兩相性幾丁聚醣。另外用氫氧化鈉使海藻酸丙二酯 (PGA) 在與直鏈烷基胺混合時水解,直鏈烷基胺會與PGA分子鏈上的丙二醇基產生置換反應,進而形成具有疏水和親水端的兩相性海藻酸丙二酯(兩相性PGA)。將上述兩相性多醣體藉由疏水交互作用 (hydrophobic interaction) 包覆LumidotTM 量子點並使其從有機相轉至水相中均勻分散,發現幾丁聚醣接枝正十六胺 (Chitosan-C16) 有較佳包覆量子點成功率與更高的螢光發光效率,故選用Chitosan-C16做為後續研究之材料。進一步研究兩相性幾丁聚醣,發現醛基化幾丁聚醣上的醛基化GlcN只有14%能與正十六胺鍵結,但已經足以包覆量子點。本研究中也嘗試自行製備硒化鎘�硫化鋅量子點。在製備核層(硒化鎘)的反應時間控制下,適於合成發黃色螢光或波長更長的量子點。以兩相性幾丁聚醣包覆自製硒化鎘�硫化鋅量子點並分散於0.1 M MES-NaOH buffer中,小於pH值5.3的酸鹼度是較適用的範圍。由於兩相性幾丁聚醣包覆之自製量子點粒子表面帶有胺基,擁有帶正電的介面電位;細菌細胞膜表面帶有負電的介面電位,且因具有帶羧基的蛋白質,量子點可與細菌表面以靜電吸引力結合或以EDC做偶合聯結。本研究嘗試結合量子點與大腸桿菌細胞膜,並以此測定菌液內之菌量。雖然實驗並未成功,但如果能在材料的製備和材料與細菌結合方式的部分進行改進的話,也許還有再嘗試的可能。 | zh_TW |
dc.description.abstract | Quantum dot (QD) has better sensitivity and stability compared with traditional organic dye and fluorescent protein. It has special advantages in science and technology. In the biomedical field, QD has been increasingly used in fluorescent labeling of biological molecules, DNA identification and disease diagnosis. In this study, we first used sodium periodate (NaIO4) to oxidize chitosan for the formation of aldehyde chitosan. Then, alkyl chains were bonded to aldehyde chitosan to form amphiphilic chitosan which has both hydrophobic and hydrophilic features. In addition, alkyl amines were grafted with propylene glycol alginate (PGA) by reacting with propylene glycol groups in the presence of sodium hydroxide. The alkylated PGA also has amphiphilic characteristics. These two amphiphilic polysaccharides could make LumidotTM QDs converted from the organic phase into aqueous phase dispersion by hydrophobic interaction. Our results showed that LumidotTM QDs capped with chitosan conjugated with 1-hexadecylamine revealed much better quantum yield than the ones made by amphiphilic PGA. This is probably due to the merit of positively charged chitosan resulting in robust electrostatic interaction on the surface of LumidotTM QDs. Although aldehyde chitosan has only 14% of aldehyde GlcN grafted with 1-hexadecylamine, yet it is sufficient to encapsulate LumidotTM QDs. This study also attempted to prepare CdSe/ZnS QDs. It was suitable for yellow and longer wavelength fluorescence QDs by reaction time control of the nuclear layer (CdSe). CdSe/ZnS QDs were encapsulated by amphiphilic chitosan dispersed in 0.1 M MES-NaOH buffer. If pH is higher than 6, the dispersion of particles clearly becomes unstable. However, the stability can be maintained if pH is less than 5.3. Since QDs encapsulated with amphiphilic chitosan have positive charges, they can attach to negatively charged bacterial surface by electrostatic attraction, or by EDC coupling to cell membrane’s proteins with carboxyl groups. In this study, QDs were tried to label on E. coli for detecting the amount of bacteria in suspension. Although the experiment did not succeed, if QD synthesis and the method of QD-bacteria association can be improved, it remains worthwhile for further exploring. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:58Z (GMT). No. of bitstreams: 1 ntu-99-R97524074-1.pdf: 3178985 bytes, checksum: 818a3553b99cf8b45a8b1302b03a4b1e (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 第二章 文獻回顧 2 2.1 奈米材料 2 2.1-1 奈米材料之特性 2 2.1-2 奈米效應 3 2.2 奈米量子點 4 2.2-1 量子點之特性 4 2.2-2 硒化鎘及硒化鎘�硫化鋅量子點之合成 6 2.2-3 量子點的表面修飾 8 2.2-4 兩相性高分子用於量子點表面修飾 12 2.2-5 量子點與有機螢光染劑的比較 13 2.2-6 量子點在生物醫學的應用 15 2.3 幾丁聚醣 16 2.4 海藻酸丙二酯 17 2.5 快速細菌計數方法 17 第三章 實驗 19 3.1 實驗藥品材料與儀器設備 19 3.1-1 藥品與其他實驗材料 19 3.1-2 重要儀器設備 21 3.2 實驗目的與架構示意圖 23 3.3 實驗步驟 24 3.3-1 過碘酸鈉氧化幾丁聚醣 24 3.3-2 製備兩相性幾丁聚醣 24 3.3-3 製備兩相性海藻酸丙二酯 25 3.3-4 兩相性多醣體包覆商業硒化鎘�硫化鋅量子點 25 3.3-5 製備硒化鎘�硫化鋅量子點 26 3.3-6 兩相性幾丁聚醣包覆自製硒化鎘�硫化鋅量子點 26 3.3-7 吸收光譜儀與螢光光譜儀 27 3.3-8 量子點的濃度定量與發光效率測量 28 3.3-9 奈米粒徑暨界面電位量測儀 30 3.3-10 核磁共振頻譜儀 31 3.3-11 自由胺基含量測定-茚三酮試劑分析 31 3.3-12 穿透式電子顯微鏡 32 3.3-13 大腸桿菌的培養 32 3.3-14 製作混濁度和活菌數的關係曲線 33 3.3-15 利用兩相性幾丁聚醣包覆之量子點為偵測細菌含量之探針 33 第四章 結果與討論 35 4.1 兩相性多醣體包覆商業硒化鎘�硫化鋅量子點之比較 35 4.2 兩相性幾丁聚醣分子結構分析 41 4.3 自製硒化鎘�硫化鋅量子點 46 4.4 兩相性幾丁聚醣包覆自製硒化鎘�硫化鋅量子點 51 4.5 兩相性幾丁聚醣包覆之量子點與細菌結合後螢光強度與菌量關係 59 第五章 結論 61 第六章 未來展望 63 第七章 參考文獻 65 第八章 附錄 74 8.1 量子產率量測與計算上的濃度修正 74 8.2 茚三酮試劑分析計算方法 77 | |
dc.language.iso | zh-TW | |
dc.title | 利用兩相性多醣體包覆之量子點為偵測細菌含量之探針 | zh_TW |
dc.title | Quantum Dots Encapsulated with Amphiphilic Polysaccharides as Bacteria Detecting Probes | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 彭慶安,董崇民,胡孝光 | |
dc.subject.keyword | 量子點,兩相性多醣體,幾丁聚醣,海藻酸丙二酯,大腸桿菌, | zh_TW |
dc.subject.keyword | quantum dots,amphiphilic polysaccharide,chitosan,propylene glycol alginate,E. coli, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。