請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47061完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧福明 | |
| dc.contributor.author | Chung-Hsien Liao | en |
| dc.contributor.author | 廖忠賢 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:46:31Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 1. 安毓英、曾小東。2004。光學感測與測量。初版。台北:五南。
2. 行政院農業委員會。2008。統計與出版品:作物(一)。台北:行政院農業委員會。網址:http://www.coa.gov.tw/view.php?catid=19675。上網日期:2009-09-15。 3. 行政院農業委員會。2009。稻米品質資訊網。台北:行政院農業委員會。網址:http://agrapp.coa.gov.tw/RICE/index.htm。上網日期:2009-09-29。 4. 李來居。1998。單粒米可溶性酸度檢定方法之建立與應用。碩士論文。台北:國立台灣大學農藝學研究所。 5. 陳正昌、程炳林、陳新豐、劉子鍵。2009。多變量分析方法統計軟體應用。五版。台北:五南。 6. 陳宗禮。2000。白米鮮度品質檢驗技術之研究。89年稻作改良年報:242-247。 7. 許愛娜、宋勳。1986。新舊米檢定方法之研究。台中區農業改良場研究彙報12: 19-26。 8. 許愛娜、宋勳。1991。單粒新舊米檢定方法之研究。台中區農業改良場研究彙報33: 1-6。 9. 許愛娜。2000。貯藏期間白米理化特性變化之研究。89年稻作改良年報:274-280。 10. 許愛娜。2005。稻米品質要項與其影響因素。台中區農業專訊第50期。 11. 經濟部標準檢驗局。2008。稻米酸鹼值檢驗法:BTB-MR試驗法。台北:經濟部檢驗局。 12. 維基百科。2009。稻。美國:維基百科。網址:http://zh.wikipedia.org/zh-tw/稻。上網日期:2009-09-17。 13. 聯合國糧食及農業組織。2007。農業資料庫。加拿大:聯合國糧食及農業組織。網址:http:// faostat.fao.org/site/567/default.aspx#ancor。上網日期:2009-09-25。 14. 謝灝谷。2008。應用螢光光譜及螢光影像評估稻米之新鮮度。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 15. 蘇正翔。2003。近紅外光影像應用於白米內部品質檢測。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 16. Almeras, E., S. Stolz, S. Vollenweider, P. Reymond, L. Mene-Saffrane, and E. E. Farmer. 2003. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34: 202-216. 17. Andersen, C. M., M. Vishart, and V. K. Holm. 2005. Application of fluorescence spectroscopy in the evaluation of light-induced oxidation in cheese. J. Agric. Food Chem. 53: 9985-9992. 18. Bailly, C., A. Benamar, F. Corbineau, and D. Come. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 97: 104-110. 19. Barber, S. 1972. Milled rice and changes during ageing. In “Rice: Chemistry and Technology”, 1st ed. by Barber, S., 215-263. St. Paul: American Association of Cereal Chemists. 20. Callaghan, K. and J. Chen. 2008. Revisiting the collinear data problem: an assessment of estimator ‘ill-conditioning’ in linear regression. Practical Assessment Research & Evaluation 13(5): 1-6. 21. Champagne, E. T. 2004. The rice grain and its gross composition. In “Rice: Chemistry and Technology”, 3rd ed. by Champagne, E. T., 77-107. St. Paul : American Association of Cereal Chemists. 22. Chrastil, J. and Z. M. Zarins. 1992. Influence of storage on peptide subunit composition of rice oryzenin. Journal of Agricultural Food Chemistry 40: 927-930. 23. Citta, L. A. and R. J. Hurtubise. 1991. The effect of moisture and gases on the room-temperature fluorescence and phosphorescence of model aromatic compounds adsorbed on filter paper. Applied Spectroscopy 45: 1547-1552. 24. Clifford, M. N. 1999. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 79: 362-372. 25. Cobinet, C., E. Perrin, and R. Huez. 2004. Application of non-negative matrix factorization to fluorescence spectroscopy. Proc. EUSIPCO, 6-10. 26. Delwiche, S. R., K. S. McKenzie, and B. D. Webb. 1996. Quality characteristics in rice by near-infrared reflectance analysis of whole-grain milled samples. Cereal Chemistry 73: 257-263. 27. Dufour, E., J. P. Frencia, and E. Kane. 2003. Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness. Food Research International 36: 415-423. 28. Gardner, H. W. 1979. Lipid hydroperoxide reactivity with proteins and amino acids: A review. J. Agric. Food Chem. 27: 220-227. 29. Hachiya, M., N. Asanome, T. Goto, and T. Noda. 2009. Review fluorescence imaging with uv-excitation for evaluating freshness of rice. JARQ 43(3): 193-198. 30. Harris, P. J., and R. D. Hartley. 1976. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259: 508-510. 31. Ingle, J. D. and S. R. Grouch. 1988. Spectrochemical Analysis. 2nd ed., 323-351. Englewood Cliffs: Prentice-Hall. 32. Ishizawa, H., Y. Saito, T. Amemiya, and K. Komatsu. 2002. Non-destructive monitoring of agricultural products (lettuce) based on laser-induced fluorescence. Journal of the Japanese society of Agricultural Machinery 64: 89-94. 33. Juliano, B. O. and D. B. Bechtel. 1985. The rice grain and its gross composition. In “Rice: Chemistry and Technology”, 2nd ed. by Juliano, B. O., 17-57. St. Paul : American Association of Cereal Chemists. 34. Juliano, B. O. 1985. Criteria and tests for rice grain qualities. In “Rice Chemistry and Technology”, 1st ed. by Juliano, B. O., 443-524. St. Paul: American Association of Cereal Chemists. 35. Karoui, R., R. Schoonheydt, E. Decuypere, B. Nicolai, and J. D. Baerdemaeker. 2007. Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2℃ and 87% relative humidity. Analytica Chimica ACTA 582: 83-91. 36. Kumke, M. U. and H. G. Lohmannsroben. 2009. Fluorescence. In “Optical Monitoring of Fresh and Processed Agricultural Crops” ed. by Zude, M., 251-375. Taylor & Francis Group. 37. Lang, M., F. Stober, and H. K. Lichtenthaler. 1991. Fluorescence emission spectra of plant leaves and plant constituents. Radiation and Environmental Biophysics 30: 333-347. 38. Luh, B. S. 1991. Rice hulls. In “Rice, Vol. 2. Utilization”, 1st ed. by Luh, B. S., 269-294. Van Nostrand Reinhold. 39. Meynier, A., V. Rampon, M. Dalgalarrondo, and C. Genot. 2004. Hexanal and t-2-hexenal form covalent bonds with whey proteins and sodium caseinate in aqueous solution. International Dairy Journal 14: 681-690. 40. Miller, H. B., G. H. Miller, and J. N. Putger. 2005. Nondestructive measurement of carotenoids in plant tissues by fluorescence quenching. Crop Sci. 45: 1786-1789. 41. Novales, B., D. Bertrand, M. F. Devaux, and P. Robert. 1996. Multispectral fluorescence imaging for the identification of food products. J Sci Food Agric 71: 376-382. 42. Perozich, J., H. B. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel. 1999. Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8: 137-146. 43. Pushpamma, P. and M. U. Reddy. 1979. Physico-chemical changes in rice and jowar stored in different agro-climatic regions of andhra pradesh. Bulletin of Grain Technology 17: 97-108. 44. Rencher, A. C. 1995. Principal component analysis. In “Methods of Multivariate Analysis” ed. by Rencher, A. C., 415-441. John Wiley & Sons, New York. 45. Saito, Y. 2009. Fluorescence. In “Optical Monitoring of Fresh and Processed Agricultural Crops” ed. by Zude, M., 251-375. Taylor & Francis Group, New York. 46. Shibuya, N. 1984. Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochemistry 23: 2233-2237. 47. Shin, M. G., S. H. Yoon, J. H. Rhee, and Y. W. Kwon. 1986. Correlation between oxidative deterioration of unsaturated lipid and n-hexanal during storage of brown rice. Journal of Food Science 51: 460-463. 48. Sung, J. M. and C. C. Chiu. 1995. Lipid peroxidation and peroxide-scavenging enzymes of naturally aged soybean seed. Plant Sci. 110: 45-52. 49. Takano, K. 1989. Studies on the mechanism of lipid-hydrolysing in rice bran. Journal of the Japanese Society of Food Science and Technology 36: 519-524. 50. Uchida, K. 2006. Lipofuscin-like fluorophores originated from malondialdehyde. Free Radic Res 40: 1335-1338. 51. Valeur, B. 2002. Introduction. In “Molecular Fluorescence: Principles and Applications”, 3-19. Wiley-vch, New York. 52. Veberg, A., G. Vogt and J. P. Wold. 2006. Fluorescence in aldehyde model systems related to lipid oxidation. LWT-Food Science and Technology 39: 562-570. 53. Widjaja, R., J. D. Craske, and M. Wootton. 1996. Changes in volatile components of paddy, brown and white fragrant rice during storage. J. Sci. Food Agric. 71: 218-224. 54. Zandomeneghi, M. 1999. Fluorescence of cereal flours. J. Agric. Food Chem. 47: 878-882. 55. Zhang, M., Y. Nakamura, S. Tsuda, T. Nagashima, and Y. Esashi. 1995. Enzymatic conversion of volatile metabolites in dry seeds during storage. Plant Cell Physiol. 36(1): 157-164. 56. Zhou, Z., K. Robards, S. Helliwell, and C. Blanchard. 2002. Ageing of stored rice: changes in chemical and physical attributes. Journal of Cereal Science 35: 65-78. 57. Zhou, Z., K. Robards, S. Helliwell, and C. Blanchard. 2004. The distribution of phenolic acids in rice. Food Chemistry 87: 401-406. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47061 | - |
| dc.description.abstract | 本研究的目的是以螢光光譜儀探討貯藏期間稻米品質的變化情形,並自製螢光感測裝置進行稻米新鮮度檢測試驗。本研究之樣本為收集自台灣北中南不同農業改良場之稻穀。實驗用稻穀經過碾米加工為白米之後貯藏於10℃、25℃與35℃之恆溫箱中,進行白米老化處理。本研究使用Jasco FP-6300螢光光譜儀以波長365nm激發光進行光譜掃描,掃描範圍之波長介於400nm到600nm,並利用PCA分析獲得特徵波長為450nm。本研究使用BTB-MR多粒米試管法與單粒米新鮮度檢測器來量測團粒米與單粒米之酸鹼度。螢光光譜實驗結果指出團粒樣本因為外形所產生的螢光強度之變異性高於粉末樣本。含水率高的樣本米螢光強度較弱。當舊米混入乳白米與新米混入腹白米之混入比率高於20%時,才會影響新舊米判別結果。掃描不同碾白米率之白米樣本之結果指出精米次數愈多其螢光強度較高。白度介於34 ~ 40之間(市售白米白度範圍)的白米樣本螢光強度不受白度影響。白米貯藏溫度愈高,其貯藏白米之螢光強度亦愈高。利用PCA針對不同溫度下貯藏1個月之螢光光譜進行分析可得到第一主成分具有95%解釋變數量,可辨別出新鮮米與老化米之螢光差異。MLR分析結果指出螢光強度會受到貯藏樣本含水率、產區與品種的影響。白米螢光強度衰減量和酸鹼值之間具有正相關性,其迴歸決定係數為0.57,迴歸結果顯著(p < 0.01)。本研究所開發之螢光感測裝置針對單粒白米樣本進行螢光偵測之實驗結果顯示單粒白米螢光強度平均值與樣本團粒米酸鹼值之間呈現負相關性,其決定係數為0.22,迴歸結果顯著(p < 0.05)。 | zh_TW |
| dc.description.abstract | The objective of this study was to apply fluorescence method for detection of the rice freshness by using spectrofluorometer and fluorescent sensing system. The paddy samples of different crop years were obtained from local district agricultural research and extension stations and farmers' associations. The paddy was processed by laboratory huller and the milled white rice was stored in incubators at temperatures of 10℃, 25℃ and 35℃. The BTB-MR method and a commercial rice grain freshness tester were used to evaluate the pH value of group-kernel rice sample and single kernel rice sample respectively. The fluorescence responses of white rice samples were measured by Jasco FP-6300 Spectrofluorometer. The rice fluorescence spectra excited by a light source at 365 nm were obtained in the range between wavelength 400 nm and 600 nm. The results show that the variation of fluorescence intensity of different crop year rice flour sample is smaller than those of group-kernel sample. The rice fluorescence intensity is low at high moisture content. The rice fluorescence intensity is not affected by chalky kernel if the ratio of chalky kernel mixed in normal rice is less than 20%. The rice fluorescence intensity is not influenced by rice whiteness at the range between 34 and 40. The fluorescence intensity of stored rice at high temperature is higher than those stored at low temperature. The coefficient of determination (R2) of regression of fluorescence intensity attenuation against pH value was 0.57 for group-kernel rice. The fluorescence sensing system developed in this study is consisted of a high power UV LED and a digital color light sensor. The coefficient of determination (R2) of regression of fluorescence intensity against pH value was 0.22 for single kernel rice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:31Z (GMT). No. of bitstreams: 1 ntu-99-R97631013-1.pdf: 3173764 bytes, checksum: 43ddd1ff30d513400272c7879a569fab (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 符號說明 xi 第一章 研究目的 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 稻米成分與結構 3 2.1.1 稻米產量與分佈 3 2.1.2 稻米生理結構 3 2.1.3 稻米的種類 5 2.2 稻米收穫後處理流程之品質指標 6 2.2.1 白米外觀品質 6 2.2.2 白米碾米品質 7 2.2.3 白米食用品質 7 2.3 稻米儲藏期間性質之變化 7 2.3.1 化學性之變化 8 2.3.2 營養品質之變化 11 2.4 螢光原理與分析方法 11 2.4.1 光的性質 11 2.4.2 螢光發光原理 14 2.4.3 螢光光譜之量化 15 2.5 螢光光譜分析方法 16 2.5.1 主成分分析(principal component analysis, PCA) 16 2.5.2 多重線性迴歸(multiple linear regression, MLR) 18 2.6 螢光光譜與影像檢測農產品品質之研究 19 2.7 稻米螢光之發光機制 21 2.8 稻米鮮新度之檢定方法及研究 23 2.8.1 傳統目視法 23 2.8.2 酸鹼值檢定法(BTB-MR試驗法) 23 2.8.3 螢光檢測稻米新鮮度之研究 24 2.8.3.1 螢光光譜方法 24 2.8.3.2 螢光影像方法 24 第三章 研究方法 26 3.1 實驗儀器設備與系統 26 3.1.1 稻米樣本加工、量測及貯藏設備 26 3.1.2 螢光光譜儀 28 3.1.3 ..UV光源與螢光感測器 29 3.1.4 螢光反射標準板與低通濾鏡 31 3.2 實驗樣本 33 3.3 稻米化學分析法 33 3.3.1 .BTB-MR多粒米試管法 33 3.3.2 單粒米新鮮度檢測器 35 3.4 螢光光譜實驗 36 3.4.1 團粒與粉末樣本光譜穩定性之探討 37 3.4.2 白米含水率對螢光強度的影響 38 3.4.3 白米白粉質粒對螢光強度的影響 38 3.4.4 白米碾白米率與白度對螢光強度的影響 39 3.4.5 貯藏環境對於不同地區及品種白米樣本之影響 39 3.4.6 探討影響白米螢光強度之因子 40 3.5 螢光感測裝置實驗 40 3.5.1 單粒白米樣本實驗 40 第四章 結果與討論 42 4.1 白米樣本酸鹼值測定結果 42 4.2 螢光光譜實驗結果 51 4.2.1 團粒與粉末樣本光譜穩定性之探討 51 4.2.2 白米含水率對螢光強度的影響 52 4.2.3 白米白粉質粒對螢光強度的影響 53 4.2.4 白米碾白米率與白度對螢光強度的影響 56 4.2.5 貯藏環境對於不同地區及品種白米樣本之影響 58 4.2.6 探討影響白米螢光強度之因子 67 4.3 螢光感測裝置實驗結果 69 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 稻米 | zh_TW |
| dc.subject | 新鮮度 | zh_TW |
| dc.subject | 螢光 | zh_TW |
| dc.subject | 光譜 | zh_TW |
| dc.subject | freshness | en |
| dc.subject | sensor | en |
| dc.subject | spectra | en |
| dc.subject | fluorescence | en |
| dc.subject | rice | en |
| dc.title | 應用螢光檢測稻米新鮮度之研究 | zh_TW |
| dc.title | Evaluation of Rice Freshness Using Fluorescence | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李允中,盧虎生,林連雄 | |
| dc.subject.keyword | 稻米,新鮮度,螢光,光譜,感測器, | zh_TW |
| dc.subject.keyword | rice,freshness,fluorescence,spectra,sensor, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
