請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 阮雪芬 | |
dc.contributor.author | Cheng-Yu Chen | en |
dc.contributor.author | 陳成諭 | zh_TW |
dc.date.accessioned | 2021-06-15T05:46:14Z | - |
dc.date.available | 2010-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-19 | |
dc.identifier.citation | Reference
1. Haupt, R., et al., Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol, 2010. 28(14): p. 2331-8. 2. Speleman, F., et al., [New insights into the genetic basis of neuroblastoma]. Verh K Acad Geneeskd Belg, 2007. 69(4): p. 167-96. 3. Gutierrez, J.C., et al., Markedly improving survival of neuroblastoma: a 30-year analysis of 1,646 patients. Pediatr Surg Int, 2007. 23(7): p. 637-46. 4. Goto, S., et al., Histopathology (International Neuroblastoma Pathology Classification) and MYCN status in patients with peripheral neuroblastic tumors: a report from the Children's Cancer Group. Cancer, 2001. 92(10): p. 2699-708. 5. Krikke, A.P. and E.J. van der Jagt, Adult neuroblastoma: a report of two cases. Rofo, 1989. 150(2): p. 138-41. 6. Castleberry, R.P., et al., Radiotherapy improves the outlook for patients older than 1 year with Pediatric Oncology Group stage C neuroblastoma. J Clin Oncol, 1991. 9(5): p. 789-95. 7. Warmann, S.W., et al., Vascular encasement as element of risk stratification in abdominal neuroblastoma. Surg Oncol, 2010. 8. Smith, S.J., et al., Incidence, ocular manifestations, and survival in children with neuroblastoma: a population-based study. Am J Ophthalmol, 2010. 149(4): p. 677-682 e2. 9. Iyer, R., et al., Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res, 2010. 16(5): p. 1478-85. 10. Al-Shammari, N.F., E. Redha, and M.H. Al Hajeri, Cervical Neonatal Neuroblastoma with Recurrent SVT. Gulf J Oncolog, 2009(6): p. 45-57. 11. Aydn, G.B., et al., Neuroblastoma in Turkish children: experience of a single center. J Pediatr Hematol Oncol, 2009. 31(7): p. 471-80. 12. Karmakar, S., et al., Combination of N-(4-hydroxyphenyl) retinamide and genistein increased apoptosis in neuroblastoma SK-N-BE2 and SH-SY5Y xenografts. Neuroscience, 2009. 163(1): p. 286-95. 13. Berdasco, M., et al., Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A, 2009. 106(51): p. 21830-5. 14. Kushner, B.H., et al., Reduced risk of secondary leukemia with fewer cycles of dose-intensive induction chemotherapy in patients with neuroblastoma. Pediatr Blood Cancer, 2009. 53(1): p. 17-22. 15. Blackman, S.C., et al., Prenatal diagnosis and subsequent treatment of an intermediate-risk paraspinal neuroblastoma: case report and review of the literature. Fetal Diagn Ther, 2008. 24(2): p. 119-25. 16. Walter, K.N., et al., Chemotherapy as a therapeutic option for congenital neuroblastoma complicated by paraplegia. Klin Padiatr, 2008. 220(3): p. 175-7. 17. Matsumura, R., et al., Retropharyngeal neuroblastoma in an infant: management without surgery. J Pediatr Hematol Oncol, 2010. 32(4): p. e160-3. 18. De Bernardi, B., et al., Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol, 2009. 27(7): p. 1034-40. 19. Russell, H.V., et al., The role of bone marrow evaluation in the staging of patients with otherwise localized, low-risk neuroblastoma. Pediatr Blood Cancer, 2005. 45(7): p. 916-9. 20. Simon, T., et al., Risk estimation in localized unresectable single copy MYCN neuroblastoma by the status of chromosomes 1p and 11q. Cancer Lett, 2006. 237(2): p. 215-22. 21. Kumar, M., P. Gupta, and A. Chaubey, The thyroid: an extremely rare primary site of neuroblastoma. Hum Pathol, 2006. 37(10): p. 1357-60. 22. Paulino, A.C., et al., Locoregional control in infants with neuroblastoma: role of radiation therapy and late toxicity. Int J Radiat Oncol Biol Phys, 2002. 52(4): p. 1025-31. 23. Cotterill, S.J., et al., Neuroblastoma: changing incidence and survival in young people aged 0-24 years. A report from the North of England Young Persons' Malignant Disease Registry. Med Pediatr Oncol, 2001. 36(1): p. 231-4. 24. Spix, C., et al., Survival of children with neuroblastoma. time trends and regional differences in Europe, 1978--1992. Eur J Cancer, 2001. 37(6): p. 722-9. 25. Berthold, F. and B. Hero, Neuroblastoma: current drug therapy recommendations as part of the total treatment approach. Drugs, 2000. 59(6): p. 1261-77. 26. Alvarado, C.S., et al., Natural history and biology of stage A neuroblastoma: a Pediatric Oncology Group Study. J Pediatr Hematol Oncol, 2000. 22(3): p. 197-205. 27. Aydin, G.B., et al., The Prognostic Significance of Vanillylmandellic Acid in Neuroblastoma. Pediatr Hematol Oncol, 2010. 28. Oberthuer, A., et al., Prognostic Impact of Gene Expression-Based Classification for Neuroblastoma. J Clin Oncol, 2010. 29. Yalcin, B., et al., High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma. Cochrane Database Syst Rev, 2010. 5: p. CD006301. 30. George, R.E., L. Diller, and M.L. Bernstein, Pharmacotherapy of neuroblastoma. Expert Opin Pharmacother, 2010. 11(9): p. 1467-78. 31. Modak, S. and N.K. Cheung, Neuroblastoma: Therapeutic strategies for a clinical enigma. Cancer Treat Rev, 2010. 36(4): p. 307-17. 32. Ladenstein, R., et al., Randomized Trial of Prophylactic Granulocyte Colony-Stimulating Factor During Rapid COJEC Induction in Pediatric Patients With High-Risk Neuroblastoma: The European HR-NBL1/SIOPEN Study. J Clin Oncol, 2010. 33. Castel, V., et al., Neuroblastoma in adolescents: genetic and clinical characterisation. Clin Transl Oncol, 2010. 12(1): p. 49-54. 34. Moon, S.B., et al., Neuroblastoma: treatment outcome after incomplete resection of primary tumors. Pediatr Surg Int, 2009. 25(9): p. 789-93. 35. Castel, V., et al., Prospective evaluation of the International Neuroblastoma Staging System (INSS) and the International Neuroblastoma Response Criteria (INRC) in a multicentre setting. Eur J Cancer, 1999. 35(4): p. 606-11. 36. Matthay, K.K., et al., Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer, 2010. 102(9): p. 1319-26. 37. Ambros, P.F., et al., International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer, 2009. 100(9): p. 1471-82. 38. Cohn, S.L., et al., The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 289-97. 39. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303. 40. Castleberry, R.P., et al., The International Neuroblastoma Risk Groups (INRG): a preliminary report. Eur J Cancer, 1997. 33(12): p. 2113-6. 41. Maris, J.M., et al., Neuroblastoma. Lancet, 2007. 369(9579): p. 2106-20. 42. Claviez, A., et al., Low occurrence of familial neuroblastomas and ganglioneuromas in five consecutive GPOH neuroblastoma treatment studies. Eur J Cancer, 2004. 40(18): p. 2760-5. 43. Maris, J.M., et al., Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12-13. Cancer Res, 2002. 62(22): p. 6651-8. 44. Mosse, Y.P., et al., Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett, 2005. 228(1-2): p. 83-90. 45. Reiff, T., et al., Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci, 2010. 30(3): p. 905-15. 46. Alam, G., et al., MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am J Pathol, 2009. 175(2): p. 856-66. 47. Longo, L., et al., PHOX2A and PHOX2B genes are highly co-expressed in human neuroblastoma. Int J Oncol, 2008. 33(5): p. 985-91. 48. Stutterheim, J., et al., PHOX2B is a novel and specific marker for minimal residual disease testing in neuroblastoma. J Clin Oncol, 2008. 26(33): p. 5443-9. 49. Robbins, J.R., et al., Radiation therapy as part of local control of metastatic neuroblastoma: the St Jude Children's Research Hospital experience. J Pediatr Surg, 2010. 45(4): p. 678-86. 50. Capasso, M. and S.J. Diskin, Genetics and genomics of neuroblastoma. Cancer Treat Res, 2010. 155: p. 65-84. 51. Capasso, M., et al., Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet, 2009. 41(6): p. 718-723. 52. Diskin, S.J., et al., Copy number variation at 1q21.1 associated with neuroblastoma. Nature, 2009. 459(7249): p. 987-91. 53. Schwab, M., R. Corvi, and L. Savelyeva, New genetic loci in neuroblastoma. Klin Padiatr, 1997. 209(4): p. 147-9. 54. Mueller, S. and K.K. Matthay, Neuroblastoma: biology and staging. Curr Oncol Rep, 2009. 11(6): p. 431-8. 55. Cetinkaya, C., et al., Combined IFN-gamma and retinoic acid treatment targets the N-myc/Max/Mad1 network resulting in repression of N-myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther, 2007. 6(10): p. 2634-41. 56. Smith, A.G., et al., Expression and DNA-binding activity of MYCN/Max and Mnt/Max during induced differentiation of human neuroblastoma cells. J Cell Biochem, 2004. 92(6): p. 1282-95. 57. Slack, A.D., et al., MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells. Cancer Res, 2007. 67(6): p. 2448-55. 58. de Tudela, M.V., et al., Human neuroblastoma cells with MYCN amplification are selectively resistant to oxidative stress by transcriptionally up-regulating glutamate cysteine ligase. J Neurochem, 2010. 113(4): p. 819-25. 59. Murphy, D.M., et al., Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One, 2009. 4(12): p. e8154. 60. Billaud, M., K.J. Isselbacher, and R. Bernards, A dominant-negative mutant of Max that inhibits sequence-specific DNA binding by Myc proteins. Proc Natl Acad Sci U S A, 1993. 90(7): p. 2739-43. 61. Keyser, R.J., et al., Identification of a novel functional deletion variant in the 5'-UTR of the DJ-1 gene. BMC Med Genet, 2009. 10: p. 105. 62. Akahoshi, E., et al., Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study. Environ Health, 2009. 8: p. 24. 63. Elliott, D.A., G.M. Halliday, and B. Garner, Apolipoprotein-E forms dimers in human frontal cortex and hippocampus. BMC Neurosci, 2010. 11: p. 23. 64. Cote-Velez, A., et al., The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription. Neurochem Res, 2008. 33(8): p. 1582-91. 65. Mukai, R., et al., Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Arch Biochem Biophys, 2010. 66. Zhang, T., et al., Beta tubulin affects the aryl hydrocarbon receptor function via an Arnt-mediated mechanism. Biochem Pharmacol, 2010. 79(8): p. 1125-33. 67. Kinehara, M., et al., Aryl hydrocarbon receptor-mediated induction of the cytosolic phospholipase A(2)alpha gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma Hepa-1c1c7 cells. J Biosci Bioeng, 2009. 108(4): p. 277-81. 68. Moffat, I.D., et al., Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities. BMC Genomics, 2010. 11: p. 263. 69. Gao, J., et al., p53 and ATM/ATR regulate 7,12-dimethylbenz[a]anthracene-induced immunosuppression. Mol Pharmacol, 2008. 73(1): p. 137-46. 70. Kurita, H., et al., Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol, 2009. 29(8): p. 689-94. 71. Forgacs, A.L., et al., Effects of TCDD on the expression of nuclear encoded mitochondrial genes. Toxicol Appl Pharmacol, 2010. 246(1-2): p. 58-65. 72. Latchney, S.E., et al., Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin. Stem Cells Dev, 2010. 73. Casado, F.L., K.P. Singh, and T.A. Gasiewicz, The aryl hydrocarbon receptor: regulation of hematopoiesis and involvement in the progression of blood diseases. Blood Cells Mol Dis, 2010. 44(4): p. 199-206. 74. Li, Y., C. He, and P. Jin, Emergence of chemical biology approaches to the RNAi/miRNA pathway. Chem Biol, 2010. 17(6): p. 584-9. 75. Cuperus, J.T., et al., Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol, 2010. 76. Martienssen, R., Molecular biology. Small RNA makes its move. Science, 2010. 328(5980): p. 834-5. 77. Chellappan, P., et al., siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res, 2010. 78. Jin, H. and J.K. Zhu, How many ways are there to generate small RNAs? Mol Cell, 2010. 38(6): p. 775-7. 79. Guo, L. and Z. Lu, Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem, 2010. 80. Martello, G., et al., A MicroRNA targeting dicer for metastasis control. Cell, 2010. 141(7): p. 1195-207. 81. Samavarchi-Tehrani, P., et al., Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 2010. 7(1): p. 64-77. 82. Martinez, N.J. and R.I. Gregory, MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell, 2010. 7(1): p. 31-5. 83. Zovoilis, A., et al., Embryonic stem cell related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. Mol Hum Reprod, 2010. 84. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98. 85. Barrett, T., et al., NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res, 2009. 37(Database issue): p. D885-90. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47054 | - |
dc.description.abstract | 神經母細胞瘤係源自於胚胎神經脊細胞的惡性腫瘤,它是不滿一歲以下兒童最常見的腫瘤之一,為一種生物行為十分複雜的腫瘤。目前已知在神經母細胞瘤中若帶有多倍數MYCN其預後極差,但是對於MYCN如何去影響腫瘤的進程其機制尚未明瞭。之前我們的分析發現,MYCN表現量會與AHR表現量呈現高度的負相關,可能代表AHR對於神經母細胞瘤進程有影響,此外經由預測發現miR-124可能會影響AHR的表現量。因此,在本篇實驗中,透過提高和降低miR-124在腫瘤細胞株中的量,我們證實了AHR的表現會受到miR-124的負向調控,而在降低了miR-124的量後MYCN的表現亦隨之下降。在前人的研究當中發現,AHR會影響發育分化過程,也有報告指出,MYCN的高度表現會使細胞走向不分化的命運。而我們在SK-N-SH這株神經母細胞瘤細胞株當中觀察到當miR-124降低,細胞會呈現出相似於分化的外觀,再透過偵測一些會在分化時高度表現的蛋白質表現量,例如growth-associated protein 43 (GAP-43)、calreticulin (CRT)還有neuron-specific enolase (NSE),證實的確miR-124降低時細胞會走向分化的命運。我們推測很可能是因為在miR-124降低時,AHR表現量升高而MYCN表現量下降導致細胞分化的結果出現。這項研究結果指出miR-124在神經母細胞瘤的進程上也許扮演一個重要的角色,也對未來神經母細胞瘤的治療開啟新的方向。 | zh_TW |
dc.description.abstract | Neuroblastoma (NB) is an embryonic cancer of the postganglionic sympathetic nervous system, which is the most common tumor in children less than one year of age. Myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN) amplification is known to be a marker of poor prognosis in NB patients. Our previous study found that N-myc expression level was inversely correlated with aryl hydrocarbon receptor (AHR). MicroRNAs have recently emerged as important regulators that play a significant role in tumorigenesis. In this study, gain-and loss-of-function analyses of miR-124 showed that miR-124 negatively regulated endogenous AHR protein expression in tumor cells. Anti-miR-124 inhibitor treatment decreased N-myc mRNA expression. MYCN has also been reported to prevent normal induction of neuroblast differentiation. Surprisingly, we observed changes in cellular morphology after inhibiting the endogenous miR-124 in SK-N-SH cell line. We also found that several cell differentiation markers, i.e. growth-associated protein 43 (GAP-43), calreticulin (CRT) and neuron-specific enolase (NSE) were up-regulated after anti-miR-124 treatment. It is possible that miR-124 suppression causes AHR up-regulation and MYCN down-regulation, resulting in cell differentiation. Our data suggest that miR-124 may play an important role in neuroblastoma cell differentiation and serve as a potential target for neuroblastoma therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:14Z (GMT). No. of bitstreams: 1 ntu-99-R97b43037-1.pdf: 2236068 bytes, checksum: cafcd4585138eb6db5da54c1aa4241c3 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Contents
Acknowledgements ii Abstract iv 中文摘要 v Chapter 1. Introduction 1 1.1. Neuroblastoma 1 1.2. v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN) 3 1.3. Aryl hydrocarbon receptor (AHR) 4 1.4. MiRNAs 6 Chapter 2. Specific Aims 8 Chapter 3. Materials and Methods 9 3.1. Cell culture 9 3.2. Transfection with synthetic miRNA 9 3.3. Computational analysis of miR-124 targets 9 3.4. Total RNA isolation 10 3.5. cDNA synthesis 10 3.6. Gene expression analysis 10 3.7. Determination of microRNA expression levels 11 3.8. Western blot analysis 11 3.9. Cell cycle analysis 12 3.10. Annexin V/propidium iodide (PI) analysis 13 3.11. DAPI staining 13 3.12. Statistical analyses 13 Chapter 4. Results 14 4.1. Inverse correlation of MYCN and AHR expression in neuroblastoma 14 4.2. Identification of miRNAs that target to AHR 3'UTR 14 4.3. MiR-124 downregulates AHR expression 15 4.4. MiR-124 can affect the level of MYCN 15 4.5. The impact of miR-124 in cell differentiation 16 4.6. Inhibition of miR-124 results in cell-cycle arrest and apoptosis in SK-N-SH 17 Chapter 5. Discussion 18 Reference 22 Appendix……………………………………………………………………………….45 | |
dc.language.iso | en | |
dc.title | 微型核醣核酸miR-124於神經母細胞瘤之角色 | zh_TW |
dc.title | The Role of miR-124 in Neuroblastoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃宣誠,許文明,廖永豐 | |
dc.subject.keyword | 神經母細胞瘤,微型核醣核酸,細胞分化,細胞週期停止,細胞凋亡, | zh_TW |
dc.subject.keyword | Neuroblastoma,MYCN,AHR,miR-124,differentiation, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。