請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島 | |
| dc.contributor.author | Rong-Guang Hsiu | en |
| dc.contributor.author | 修榮光 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:46:07Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | Altas, D., 1960: Radar detection of the sea breeze. J.Meteor., 17, 244-258
Asai, T., and S. Mitsumoto, 1978: Effects of aninclined land surface on the land and sea breeze circulation. Jour. Met. Soc. Japan, 56, 559-570. Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–969. ——, and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon.Wea. Rev., 125, 2112–2130. Bresch, J.F. and R.H. Johnson, 1990: Rainfall and vertical motion associated with TAMEX precipitation systems. Proc. Workshop on TAMEX Scientific Results, NCAR, 24-26 September, 84-89. Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463-476 Byers, H. R., and R.R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287pp. Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990a: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 26-49. Cunning, John B., Ronald L. Holle, Patrick T. Gannon, Andrew I. Watson, 1982: Convective evolution and merger in the FACE experimental area: Mesoscale convection and boundary layer interactions. J. Appl. Meteor., 21, 953-977 Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev.,127, 858–878. Fankhauser J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment, Mon. Wea. Rev.,123, 291–313. Gossard, E., 1977: Refractive index variance amd its height distribution in different air masses. Radio Sci. 12, 89-105. Hubbert, J. C., M. Dixon, and S. M. Ellis, 2009b: Weather radar ground clutter. Part II: Real-time identification and filtering. Journal of Atmospheric and Oceanic Technology, 26 (7), pp. 1181 – 1197. Johnson, R. H., and J. F. Bresch, 1989: Interaction between sea and land breezes and deep convection over Taiwan. Proc. Workshop on TAMEX Preliminary Scientific Results, Taipei, 22-30 June, 1-5. Johnson, R. H., and J. F. Bresch, 1991: Diagnosed characteristics of precipitation systems over Taiwan during the May-June 1987 TAMEX. Mon. Wea. Rev., 119, 2540-2557. Jorgenson D. P., and T.M. Weckwerth, 2003: Forcing and Organization of Convective Systems. Chapter 4. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Meteor. Monogr., No. 52. Roger Wakimoto and Ramesh Srivastava, Ed., Amer. Meteor. Soc., pp.75-103 Keeler, R., J. J. Lutz, and J. Vivekanandan, 2000: S-Pol: NCAR's polarimetric Doppler research radar. Proc. IGARSS 2000, Vol. 4, Honolulu, HI, IEEE, Lima, Maria Andrea, James W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 1847-1864 Markowski P. M., and Y.P. Richardson, 2010: Mesoscale Meteorology in Midlatitude. Wiley-Blackwell, 430 pp. Minda, H., F.A. Furuzawa, S. Satoh, and K. Nakamura, 2010: Convective boundary layer above a subtropical island observed by C-band radar and interpretation using a cloud resolving model. Jour. Met. Soc. Japan, 88, 285-312. Sano, T., and K. Tsuboki, 2006: Structure and evolution of a cumulonimbus cloud developed over a mountain slope with the arrival of sea breeze in summer. Jour. Met. Soc. Japan, 84, 613-640. Simpson J. E., 1969: A comparison between laboratory and atmospheric density currents. Quant. J. Roy. Meteor. Soc., 95, 758-765. ——, 1994: Sea breeze and local winds. Cambridge University Press, 234 pp. ——, 1996: Gravity current in the environment and the laboratory. Cambridge University Press, 244 pp. Skolnik, M., 2001: Introduction to Radar Systems. 3rd ed. McGraw-Hill, 722 pp. Stull R., 1988: An introduction to boundary layer meteorology. Kluwer Academic Publisher, 666 pp. Stull R., 2006: The atmospheric boundary Layer. Chapter 9. Atmospheric Science: an introductory survey-2nd ed. Wallace J. M., and P.V. Hobbs, Eds., Academic Press. pp.374-411 Tsunematsu, N., and K. Kai, 2004: Time variation of cloud distribution near surface wind convergence zone in the Nobi plain during daytime on summer sunny days. Jour. Met. Soc. Japan, 82, 1505-1520. Ohashi, Y., and H. Kida, 2002: Effects of mountains and urban areas on daytime local-circulations in the Osaka and Kyoto regions. Jour. Met. Soc. Japan, 80, 539-560. Purdom, 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149-166. Tong, C. C., 2009: Precipitation characteristics and associated environment regimes during SoWMEX/TiMREX. Master Thesis of Department of Atmospheric Science, National Taiwan University. Taipei, Taiwan, 90 pp. Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388. Weckwerth, Tammy M., Roger M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 2169-2187 ——, Parsons, David B., 2006: A Review of Convection Initiation and Motivation for IHOP_2002. Mon. Wea. Rev., 134, 5-22 Wilson J. W., and R. Carbone, 1984: Nowcasting with Doppler radar: The forecaster-computer relationship. Nowcasting II, K. Browning, Ed., European Space Agency, 177-186. ——, and W. E. Schreiber, 1986: Initiation of Convective Storms at Radar-Observed Boundary-Layer Convergence Lines. Mon. Wea. Rev., 114, 2516–2536. ——, T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos.Oceanic Technol., 11, 1184–1206. ——, Rita D. Roberts, 2006: Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective. Mon. Wea. Rev., 134, 23-47 周仲島、張茂興及何台華,1997:山區雷雨系統之降水與運動場結構分析。大氣科學,25,483-510。 林沛練、盛揚帆,1990:TAMEX 期間台灣地區海陸風特性之初步分析。天氣分析與預報研討會論文彙編,中央氣象局,133-144 頁。 林沛練、陳台琦、梁丕賢及盛揚帆,1992:台灣地區局部環流之特性及其與深對流關係之探討。天氣分析與預報研討會論文彙編,中央氣象局,69-95頁。 林熹閔、郭鴻基,1996:1994年南台灣夏季午後對流之研究,大氣科學,24,3,249-280。 陳泰然,1978:台灣梅雨期之中尺度天氣系統分析。台灣地區災變研討會論文彙編,國科會,150-157。 陳泰然,1992:台灣梅雨季之中尺度現象研究(二)。台大大氣科學研究所研究報告。NTUATM-1992-001,185頁。 陳泰然與林宗嵩,1995:嘉南地區定量降水預報整合計畫(I)子計畫三:五、六月梅雨季定量降水預報之中尺度氣候研究(I)。國科會防災科技研究報告。NSC84-2621-P-002-001B,113頁。 陳泰然與楊進賢,1988a:台灣梅雨季豪雨之時空分布特徵。大氣科學,16,151-162。 陳泰然與楊進賢,1988b:台灣梅雨期對流降水之氣候特徵。天氣分析與預報研討會論文彙編,中央氣象局,565-571。 紀水上與陳泰然,1989:第一階段TAMEX密集觀測之個案對流系統與降水研究。大氣科學,17,59-75。 紀水上、陳泰然與郭世昌,1998:梅雨季台灣地區平均雲頂溫度之時空分部特徵探討。大氣科學,26,1-17。 張文明,2009:西南氣流實驗探空資料特徵分析研究,國立台灣大學大氣科學研究所碩士論文。 張子琦與陳泰然,2001:TAMEX期間台灣西南部地區弱綜觀強迫下之垂直運動 研究。大氣科學,29,171-189 。 鳳 雷,2002:熱帶降水系統之雙偏振雷達觀測研究,國立台灣大學大氣科學研究所博士論文。 蔡清彥、童雅卿:1987,台灣南端地區局部環流之研究,大氣科學,15,1,69-88。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47049 | - |
| dc.description.abstract | 中尺度邊界是一種由於局地加熱差異在邊界層內的氣流輻合帶,這種輻合帶通常會加深邊界層濕空氣的厚度,提供較有利條件給對流系統發展。本研究利用2008年西南氣流實驗NCAR S-POL雷達低層仰角回波資料,參考Wilson and Schreiber (1986)之研究方法,從5月15到6月30日利用主觀方法挑選高屏地區中尺度邊界個案,針對中尺度邊界的分布地區、出現時間、移動方向進行整理分類。
在146個中尺度邊界個案中可分類出七種邊界:26條海風鋒面、7條陸風鋒面、24條對流外流邊界、9條山脊弱回波線、50條海上弱回波線、30條未定義之陸地弱回波線。除了陸風鋒面沒有激發出對流,海風鋒面有38%的個案激發對流,其餘的中尺度邊界個案都有超過一半的比例激發出對流。中尺度邊界的生命期約略為2~3小時。另外中尺度邊界的出現種類與日夜分布、海陸分布、西南季風是否盛行有關。在季風盛行期間白天陸地盛行南風時主要為山脊弱回波線、非季風盛行期則以海風鋒面為主,這兩種邊界和實驗期間Tong(2009)所劃分的陸地型顯著降雨個案有密切關係。另外亦對所有海風鋒面是否激發對流的環境情況做探討。合成屏東早上8點探空資料顯示,發現有激發對流之合成探空比沒有激發對流之合成探空其比濕值較高,但溫度上沒有明顯差異。另外分析海風鋒面之對流激發位置,顯示和地形有密切關係。 | zh_TW |
| dc.description.abstract | It has long been known that boundary layer convergence zones are precursors to convective development and organization. These low-level convergence zones often act to locally deepen the moist layer and create conditions favorable for deep convection. (Jorgenson and Weckwerth 2003) Following Wilson and Schreiber (1986), mesoscale boundary cases are selected from NCAR S-Pol radar data of low elevation angle full-PPI scans in the study during SoWMEX/TiMREX. Those mesoscale boundaries are classified according to the location, the time of occurrence the direction of movement.
The 146 mesoscale boundaries cases can be classified to 7 types: 26 sea breeze fronts, 7 land breeze fronts, 24 storm outflow boundaries, 9 weak echo lines over hill, 50 weak echo lines over sea(27 remote cases, 23 local cases), and 30 undefined weak echo lines over land. No storm initiation with land breeze fronts are identified, and thirty-eight percent of sea breeze fronts are related to storm initiation. Other types of mesoscale boundaries are highly related to storm initiation. The lifetime of mesoscale boundaries are about 2 to 3 hours. The occurrences of each type of mesoscale boundary are affected by the time (day/night), the location (land/sea), and whether the monsoon is onset or not. When the monsoon is not onset, sea breeze fronts usually occur during the daytime. When the monsoon is onset, gust fronts and weak echo lines over hill are the major mesoscale boundaries during the daytime. In this study, it is found that sea breeze fronts and weak echo lines over hill are closely related to the land type significant continuous rainfall periods (SCRPs) identified by Tong (2009). The storm initiation or not with sea breeze front is also studied using Pingtung composite sounding. It is found that the atmosphere has higher humidity below 550 hpa with storm initiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:46:07Z (GMT). No. of bitstreams: 1 ntu-99-R96229021-1.pdf: 36748773 bytes, checksum: dd6f23ad7fc1b9a06b4b69a2e520d303 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………i
中文摘要………………………………………………………ii 英文摘要………………………………………………………iii 目錄……………………………………………………………iv 圖錄……………………………………………………………vi 表錄……………………………………………………………viii 第一章 前言…………………………………………………1 1.1 背景介紹………………………………1 1.1.1 中尺度邊界……………………………1 1.1.2 中尺度邊界與對流激發研究歷程……3 1.1.3台灣西南部地區對於局部環流及弱綜觀環境之研究回顧...5 1.2 研究動機與目標………………………7 第¬二章 資料處理…………………………………………8 2.1 使用資料來源………………………8 2.2 S波段偏極化雷達(S-pol radar)…8 2.2.1 S-pol雷達介紹…………8 2.2.2 雷達站作業情形………9 2.2.3 雷達資料即時校驗……10 2.2.4 S-pol訊號處理………10 2.2.5 實驗期間的雷達掃描策略設定…11 2.2.6 實驗地區及S-pol相關之地形描述12 2.2.7 S-pol雷達之水象粒子反演產品…13 2.3 MTSAT可見光衛星雲圖………13 2.4 地面測站……………………14 2.5 探空資料……………………14 2.6 S-Pol資料處理………………15 2.7 S-Pol 低層仰角弱回波特徵…15 第三章 S-pol在高屏地區中尺度邊界的觀測分析……17 3.1 中尺度邊界的挑選與分類…………17 3.1.1 挑選中尺度邊界個案……17 3.1.2 中尺度邊界分類及個案說明…18 3.2 中尺度邊界分析結果………………20 3.3 中尺度邊界與對流激發…………23 3.3.1 海風鋒面……………23 第四章 中尺度邊界激發對流個案……………………25 4.1 環境條件…………………………25 4.2 風暴激發過程……………………26 4.2.1 雷達1.1度仰角PPI回波特徵……26 4.2.2 海風鋒面與地面測站時間序列資料27 4.2.3 雷達回波與中尺度分析……………28 4.2.4 雷達RHI回波特徵…………………29 4.3 對流激發的原因……………………31 第五章 討論與結論…………………………………………32 參考文獻………………………………………………………35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高屏地區。 | zh_TW |
| dc.subject | S-pol | zh_TW |
| dc.subject | 對流激發 | zh_TW |
| dc.subject | 中尺度邊界 | zh_TW |
| dc.subject | 西南氣流實驗 | zh_TW |
| dc.subject | 邊界層輻合帶 | zh_TW |
| dc.subject | 局部環流 | zh_TW |
| dc.subject | Kaohsiung-Pingtung area | en |
| dc.subject | SoWMEX/TiMREX | en |
| dc.subject | mesoscale boundaries | en |
| dc.subject | convection initiation | en |
| dc.subject | S-pol | en |
| dc.subject | local circulation | en |
| dc.subject | convergence zone in boundary layer | en |
| dc.title | 西南氣流實驗期間中尺度邊界與對流激發 | zh_TW |
| dc.title | Mesoscale Boundaries and Storm Initiation During SoWMEX/TiMREX | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳泰然,吳俊傑,李清勝,吳清吉 | |
| dc.subject.keyword | S-pol,對流激發,中尺度邊界,西南氣流實驗,邊界層輻合帶,局部環流,高屏地區。, | zh_TW |
| dc.subject.keyword | S-pol,convection initiation,mesoscale boundaries,SoWMEX/TiMREX,convergence zone in boundary layer,local circulation,Kaohsiung-Pingtung area, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 35.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
