Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬(Wan-Wan Lin)
dc.contributor.authorYi-Hsiang Liaoen
dc.contributor.author廖翊翔zh_TW
dc.date.accessioned2021-06-15T05:45:53Z-
dc.date.available2015-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationPartI:
Agostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., and Tschopp, J. (2004). NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319-325.
Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-TeKippe, E., Taxman, D.J., Guthrie, E.H., Pickles, R.J., and Ting, J.P. (2009). The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556-565.
Andrei, C., Margiocco, P., Poggi, A., Lotti, L.V., Torrisi, M.R., and Rubartelli, A. (2004). Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci U S A 101, 9745-9750.
Archbold, R.A., and Timmis, A.D. (1998). Cholesterol lowering and coronary artery disease: mechanisms of risk reduction. Heart 80, 543-547.
Auer, J., Berent, R., Weber, T., and Eber, B. (2002). Clinical significance of pleiotropic effects of statins: lipid reduction and beyond. Curr Med Chem 9, 1831-1850.
Auer, J., Weber, T., and Eber, B. (2004). Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 351, 714-717; author reply 714-717.
Basak, C., Pathak, S.K., Bhattacharyya, A., Mandal, D., Pathak, S., and Kundu, M. (2005). NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 280, 4279-4288.
Bond, M., Wu, Y.J., Sala-Newby, G.B., and Newby, A.C. (2008). Rho GTPase, Rac1, regulates Skp2 levels, vascular smooth muscle cell proliferation, and intima formation in vitro and in vivo. Cardiovasc Res 80, 290-298.
Boschan, C., Witt, O., Lohse, P., Foeldvari, I., Zappel, H., and Schweigerer, L. (2006). Neonatal-onset multisystem inflammatory disease (NOMID) due to a novel S331R mutation of the CIAS1 gene and response to interleukin-1 receptor antagonist treatment. Am J Med Genet A 140, 883-886.
Boyden, E.D., and Dietrich, W.F. (2006). Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38, 240-244.
Braet, K., Paemeleire, K., D'Herde, K., Sanderson, M.J., and Leybaert, L. (2001). Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 13, 79-91.
Brown, J.H., Del Re, D.P., and Sussman, M.A. (2006). The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98, 730-742.
Bruey, J.M., Bruey-Sedano, N., Luciano, F., Zhai, D., Balpai, R., Xu, C., Kress, C.L., Bailly-Maitre, B., Li, X., Osterman, A., Matsuzawa, S., Terskikh, A.V., Faustin, B., and Reed, J.C. (2007). Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45-56.
Bryant, C., and Fitzgerald, K.A. (2009). Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19, 455-464.
Burridge, K., and Wennerberg, K. (2004). Rho and Rac take center stage. Cell 116, 167-179.
Cassel, S.L., Eisenbarth, S.C., Iyer, S.S., Sadler, J.J., Colegio, O.R., Tephly, L.A., Carter, A.B., Rothman, P.B., Flavell, R.A., and Sutterwala, F.S. (2008). The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105, 9035-9040.
Cassel, S.L., Joly, S., and Sutterwala, F.S. (2009). The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21, 194-198.
Celec, P., and Behuliak, M. (2008). The lack of non-steroid isoprenoids causes oxidative stress in patients with mevalonic aciduria. Med Hypotheses 70, 938-940.
Chen, G., Shaw, M.H., Kim, Y.G., and Nunez, G. (2009). NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4, 365-398.
Chen, J.C., Huang, K.C., and Lin, W.W. (2006). HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal 18, 32-39.
Chu, J., Thomas, L.M., Watkins, S.C., Franchi, L., Nunez, G., and Salter, R.D. (2009). Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol 86, 1227-1238.
Coward, W.R., Marei, A., Yang, A., Vasa-Nicotera, M.M., and Chow, S.C. (2006). Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J Immunol 176, 5284-5292.
De Leo, L., Marcuzzi, A., Decorti, G., Tommasini, A., Crovella, S., and Pontillo, A. (2010). Targeting farnesyl-transferase as a novel therapeutic strategy for mevalonate kinase deficiency: in vitro and in vivo approaches. Pharmacol Res 61, 506-510.
Denhardt, D.T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318 ( Pt 3), 729-747.
Dinarello, C.A. (1989). Interleukin-1 and the effects of cyclooxygenase inhibitors on its biological activities. Bull N Y Acad Med 65, 80-92.
Dinarello, C.A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27, 519-550.
Dong, M., Yan, B.P., and Yu, C.M. (2009). Current status of rho-associated kinases (ROCKs) in coronary atherosclerosis and vasospasm. Cardiovasc Hematol Agents Med Chem 7, 322-330.
Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B.T., and Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677.
Drenth, J.P., Cuisset, L., Grateau, G., Vasseur, C., van de Velde-Visser, S.D., de Jong, J.G., Beckmann, J.S., van der Meer, J.W., and Delpech, M. (1999). Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International Hyper-IgD Study Group. Nat Genet 22, 178-181.
Dubyak, G.R. (2009). Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on 'A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP'. Am J Physiol Cell Physiol 296, C235-241.
Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nunez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K.A., Rock, K.L., Moore, K.J., Wright, S.D., Hornung, V., and Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361.
Feldmeyer, L., Keller, M., Niklaus, G., Hohl, D., Werner, S., and Beer, H.D. (2007). The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17, 1140-1145.
Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P., and Nunez, G. (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7, 576-582.
Franchi, L., Eigenbrod, T., Munoz-Planillo, R., and Nunez, G. (2009a). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10, 241-247.
Franchi, L., and Nunez, G. (2008). The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 38, 2085-2089.
Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009b). Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227, 106-128.
Frenkel, J., Rijkers, G.T., Mandey, S.H., Buurman, S.W., Houten, S.M., Wanders, R.J., Waterham, H.R., and Kuis, W. (2002). Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum 46, 2794-2803.
Gabay, C., Lamacchia, C., and Palmer, G. (2010). IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6, 232-241.
Galle, M., Schotte, P., Haegman, M., Wullaert, A., Yang, H.J., Jin, S., and Beyaert, R. (2008). The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J Cell Mol Med 12, 1767-1776.
Gasse, P., Riteau, N., Charron, S., Girre, S., Fick, L., Petrilli, V., Tschopp, J., Lagente, V., Quesniaux, V.F., Ryffel, B., and Couillin, I. (2009). Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 179, 903-913.
Geddes, K., Magalhaes, J.G., and Girardin, S.E. (2009). Unleashing the therapeutic potential of NOD-like receptors. Nat Rev Drug Discov 8, 465-479.
Glomset, J.A., Gelb, M.H., and Farnsworth, C.C. (1990). Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15, 139-142.
Glomset, J.A., Gelb, M.H., and Farnsworth, C.C. (1992). Geranylgeranylated proteins. Biochem Soc Trans 20, 479-484.
Goldstein, J.L., and Brown, M.S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-430.
Greenwood, J., Steinman, L., and Zamvil, S.S. (2006). Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358-370.
Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschlager, N., Endres, S., Hartmann, G., Tardivel, A., Schweighoffer, E., Tybulewicz, V., Mocsai, A., Tschopp, J., and Ruland, J. (2009). Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433-436.
Hager, E.J., and Gibson, K.M. (2007). Mevalonate kinase deficiency and autoinflammation. N Engl J Med 357, 1871-1872.
Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J., and Golenbock, D.T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9, 857-865.
Hausding, M., Witteck, A., Rodriguez-Pascual, F., von Eichel-Streiber, C., Forstermann, U., and Kleinert, H. (2000). Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 131, 553-561.
Hidaka, T., Hata, T., Soga, J., Fujii, Y., Idei, N., Fujimura, N., Kihara, Y., Noma, K., Liao, J.K., and Higashi, Y. (2010). Increased leukocyte rho kinase (ROCK) activity and endothelial dysfunction in cigarette smokers. Hypertens Res 33, 354-359.
Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A., and Kolodner, R.D. (2001). Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29, 301-305.
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., and Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847-856.
Houten, S.M., Frenkel, J., and Waterham, H.R. (2003). Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation. Cell Mol Life Sci 60, 1118-1134.
Houten, S.M., Kuis, W., Duran, M., de Koning, T.J., van Royen-Kerkhof, A., Romeijn, G.J., Frenkel, J., Dorland, L., de Barse, M.M., Huijbers, W.A., Rijkers, G.T., Waterham, H.R., Wanders, R.J., and Poll-The, B.T. (1999). Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet 22, 175-177.
Hsu, L.C., Ali, S.R., McGillivray, S., Tseng, P.H., Mariathasan, S., Humke, E.W., Eckmann, L., Powell, J.J., Nizet, V., Dixit, V.M., and Karin, M. (2008). A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A 105, 7803-7808.
Huang, Y.J., Maruyama, Y., Dvoryanchikov, G., Pereira, E., Chaudhari, N., and Roper, S.D. (2007). The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104, 6436-6441.
Hyvelin, J.M., Howell, K., Nichol, A., Costello, C.M., Preston, R.J., and McLoughlin, P. (2005). Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97, 185-191.
Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R., and Iwasaki, A. (2009). Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206, 79-87.
Jin, Y., Mailloux, C.M., Gowan, K., Riccardi, S.L., LaBerge, G., Bennett, D.C., Fain, P.R., and Spritz, R.A. (2007). NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356, 1216-1225.
Kanneganti, T.D., Lamkanfi, M., Kim, Y.G., Chen, G., Park, J.H., Franchi, L., Vandenabeele, P., and Nunez, G. (2007). Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433-443.
Kanneganti, T.D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J.H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P., Akira, S., and Nunez, G. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233-236.
Korpi-Steiner, N.L., Sheerar, D., Puffer, E.B., Urben, C., Boyd, J., Guadarrama, A., Schell, K., and Denlinger, L.C. (2008). Standardized method to minimize variability in a functional P2X(7) flow cytometric assay for a multi-center clinical trial. Cytometry B Clin Cytom 74, 319-329.
Kowaltowski, A.J., de Souza-Pinto, N.C., Castilho, R.F., and Vercesi, A.E. (2009). Mitochondria and reactive oxygen species. Free Radic Biol Med 47, 333-343.
Kuijk, L.M., Beekman, J.M., Koster, J., Waterham, H.R., Frenkel, J., and Coffer, P.J. (2008a). HMG-CoA reductase inhibition induces IL-1beta release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112, 3563-3573.
Kuijk, L.M., Mandey, S.H., Schellens, I., Waterham, H.R., Rijkers, G.T., Coffer, P.J., and Frenkel, J. (2008b). Statin synergizes with LPS to induce IL-1beta release by THP-1 cells through activation of caspase-1. Mol Immunol 45, 2158-2165.
Lamkanfi, M., Malireddi, R.K., and Kanneganti, T.D. (2009). Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284, 20574-20581.
Larsen, C.M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J.A., Seifert, B., Mandrup-Poulsen, T., and Donath, M.Y. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356, 1517-1526.
Laufs, U., and Liao, J.K. (1998). Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273, 24266-24271.
Laufs, U., and Liao, J.K. (2000a). Direct vascular effects of HMG-CoA reductase inhibitors. Trends Cardiovasc Med 10, 143-148.
Laufs, U., and Liao, J.K. (2000b). Targeting Rho in cardiovascular disease. Circ Res 87, 526-528.
Lea, A.P., and McTavish, D. (1997). Atorvastatin. A review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs 53, 828-847.
Lequerre, T., Vittecoq, O., Pouplin, S., Klemmer, N., Mejjad, O., Daragon, A., Prieur, A.M., and Le Loet, X. (2007). Mevalonate kinase deficiency syndrome with structural damage responsive to anakinra. Rheumatology (Oxford) 46, 1860-1862.
Leybaert, L., Braet, K., Vandamme, W., Cabooter, L., Martin, P.E., and Evans, W.H. (2003). Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 10, 251-257.
Li, F.H., Xia, W., Li, A.W., Zhao, C.F., and Sun, R.P. (2007). Inhibition of rho kinase attenuates high flow induced pulmonary hypertension in rats. Chin Med J (Engl) 120, 22-29.
Li, H., Willingham, S.B., Ting, J.P., and Re, F. (2008). Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol 181, 17-21.
Liao, J.K., and Laufs, U. (2005). Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45, 89-118.
Lindholm, M.W., and Nilsson, J. (2007). Simvastatin stimulates macrophage interleukin-1beta secretion through an isoprenylation-dependent mechanism. Vascul Pharmacol 46, 91-96.
Malozowski, S., and Sahlroot, J.T. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 357, 302-303; author reply 303.
Maltese, W.A. (1990). Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 4, 3319-3328.
Mandey, S.H., Kuijk, L.M., Frenkel, J., and Waterham, H.R. (2006). A role for geranylgeranylation in interleukin-1beta secretion. Arthritis Rheum 54, 3690-3695.
Marcuzzi, A., Decorti, G., Pontillo, A., Ventura, A., and Tommasini, A. (2010a). Decreased cholesterol levels reflect a consumption of anti-inflammatory isoprenoids associated with an impaired control of inflammation in a mouse model of mevalonate kinase deficiency. Inflamm Res 59, 335-338.
Marcuzzi, A., Tommasini, A., Crovella, S., and Pontillo, A. (2010b). Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes. Int Immunopharmacol 10, 639-642.
Mariathasan, S., and Monack, D.M. (2007). Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7, 31-40.
Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218.
Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W.P., Weinrauch, Y., Monack, D.M., and Dixit, V.M. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232.
Martinon, F., Agostini, L., Meylan, E., and Tschopp, J. (2004). Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14, 1929-1934.
Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426.
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241.
McFarlane, S.I., Muniyappa, R., Francisco, R., and Sowers, J.R. (2002). Clinical review 145: Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87, 1451-1458.
Meissner, F., Molawi, K., and Zychlinsky, A. (2008). Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9, 866-872.
Meylan, E., Tschopp, J., and Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature 442, 39-44.
Miao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. (2006). Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7, 569-575.
Miao, E.A., Ernst, R.K., Dors, M., Mao, D.P., and Aderem, A. (2008). Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105, 2562-2567.
Michel, A.D., Kaur, R., Chessell, I.P., and Humphrey, P.P. (2000). Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol 130, 513-520.
Montero, M.T., Hernandez, O., Suarez, Y., Matilla, J., Ferruelo, A.J., Martinez-Botas, J., Gomez-Coronado, D., and Lasuncion, M.A. (2000). Hydroxymethylglutaryl-coenzyme A reductase inhibition stimulates caspase-1 activity and Th1-cytokine release in peripheral blood mononuclear cells. Atherosclerosis 153, 303-313.
Muller, A.J., Hoffmann, C., Galle, M., Van Den Broeke, A., Heikenwalder, M., Falter, L., Misselwitz, B., Kremer, M., Beyaert, R., and Hardt, W.D. (2009). The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 6, 125-136.
Netea, M.G., Nold-Petry, C.A., Nold, M.F., Joosten, L.A., Opitz, B., van der Meer, J.H., van de Veerdonk, F.L., Ferwerda, G., Heinhuis, B., Devesa, I., Funk, C.J., Mason, R.J., Kullberg, B.J., Rubartelli, A., van der Meer, J.W., and Dinarello, C.A. (2009). Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324-2335.
Neven, B., Callebaut, I., Prieur, A.M., Feldmann, J., Bodemer, C., Lepore, L., Derfalvi, B., Benjaponpitak, S., Vesely, R., Sauvain, M.J., Oertle, S., Allen, R., Morgan, G., Borkhardt, A., Hill, C., Gardner-Medwin, J., Fischer, A., and de Saint Basile, G. (2004). Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 103, 2809-2815.
Nevyjel, M., Pontillo, A., Calligaris, L., Tommasini, A., D'Osualdo, A., Waterham, H.R., Granzotto, M., Crovella, S., Barbi, E., and Ventura, A. (2007). Diagnostics and therapeutic insights in a severe case of mevalonate kinase deficiency. Pediatrics 119, e523-527.
Nohria, A., Prsic, A., Liu, P.Y., Okamoto, R., Creager, M.A., Selwyn, A., Liao, J.K., and Ganz, P. (2009). Statins inhibit Rho kinase activity in patients with atherosclerosis. Atherosclerosis 205, 517-521.
Normand, S., Massonnet, B., Delwail, A., Favot, L., Cuisset, L., Grateau, G., Morel, F., Silvain, C., and Lecron, J.C. (2009). Specific increase in caspase-1 activity and secretion of IL-1 family cytokines: a putative link between mevalonate kinase deficiency and inflammation. Eur Cytokine Netw 20, 101-107.
O'Connor, W., Jr., Harton, J.A., Zhu, X., Linhoff, M.W., and Ting, J.P. (2003). Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol 171, 6329-6333.
Olkkonen, V.M., and Stenmark, H. (1997). Role of Rab GTPases in membrane traffic. Int Rev Cytol 176, 1-85.
Pedersen, T.R., Kjekshus, J., Berg, K., Haghfelt, T., Faergeman, O., Faergeman, G., Pyorala, K., Miettinen, T., Wilhelmsen, L., Olsson, A.G., and Wedel, H. (2004). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. Atheroscler Suppl 5, 81-87.
Pedra, J.H., Cassel, S.L., and Sutterwala, F.S. (2009). Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 21, 10-16.
Pelegrin, P., and Surprenant, A. (2007). Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282, 2386-2394.
Pelegrin, P., and Surprenant, A. (2009). Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28, 2114-2127.
Pellegatti, P., Falzoni, S., Pinton, P., Rizzuto, R., and Di Virgilio, F. (2005). A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16, 3659-3665.
Petrilli, V., Dostert, C., Muruve, D.A., and Tschopp, J. (2007a). The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19, 615-622.
Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. (2007b). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14, 1583-1589.
Plenz, G.A., Hofnagel, O., and Robenek, H. (2004). Differential modulation of caveolin-1 expression in cells of the vasculature by statins. Circulation 109, e7-8; author reply e7-8.
Pontillo, A., Paoluzzi, E., and Crovella, S. (2010). The inhibition of mevalonate pathway induces upregulation of NALP3 expression: new insight in the pathogenesis of mevalonate kinase deficiency. Eur J Hum Genet 18, 844-847.
Poyet, J.L., Srinivasula, S.M., Tnani, M., Razmara, M., Fernandes-Alnemri, T., and Alnemri, E.S. (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276, 28309-28313.
Qu, Y., Franchi, L., Nunez, G., and Dubyak, G.R. (2007). Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179, 1913-1925.
Riento, K., Guasch, R.M., Garg, R., Jin, B., and Ridley, A.J. (2003). RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23, 4219-4229.
Riento, K., and Ridley, A.J. (2003). Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446-456.
Sassano, A., and Platanias, L.C. (2008). Statins in tumor suppression. Cancer Lett 260, 11-19.
Sawada, N., Itoh, H., Ueyama, K., Yamashita, J., Doi, K., Chun, T.H., Inoue, M., Masatsugu, K., Saito, T., Fukunaga, Y., Sakaguchi, S., Arai, H., Ohno, N., Komeda, M., and Nakao, K. (2000). Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 101, 2030-2033.
Schneiders, M.S., Houten, S.M., Turkenburg, M., Wanders, R.J., and Waterham, H.R. (2006). Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency. Arthritis Rheum 54, 2306-2313.
Schotte, P., Denecker, G., Van Den Broeke, A., Vandenabeele, P., Cornelis, G.R., and Beyaert, R. (2004). Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 279, 25134-25142.
Schroder, K., Zhou, R., and Tschopp, J. (2010). The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300.
Shibuya, M., Suzuki, Y., Sugita, K., Saito, I., Sasaki, T., Takakura, K., Nagata, I., Kikuchi, H., Takemae, T., Hidaka, H., and et al. (1992). Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg 76, 571-577.
Stutz, A., Golenbock, D.T., and Latz, E. (2009). Inflammasomes: too big to miss. J Clin Invest 119, 3502-3511.
Sundaresan, M., Yu, Z.X., Ferrans, V.J., Sulciner, D.J., Gutkind, J.S., Irani, K., Goldschmidt-Clermont, P.J., and Finkel, T. (1996). Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 318 ( Pt 2), 379-382.
Sutterwala, F.S., Mijares, L.A., Li, L., Ogura, Y., Kazmierczak, B.I., and Flavell, R.A. (2007). Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204, 3235-3245.
Suzuki, T., Franchi, L., Toma, C., Ashida, H., Ogawa, M., Yoshikawa, Y., Mimuro, H., Inohara, N., Sasakawa, C., and Nunez, G. (2007). Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3, e111.
Taieb, A. (2007). NALP1 and the inflammasomes: challenging our perception of vitiligo and vitiligo-related autoimmune disorders. Pigment Cell Res 20, 260-262.
Takemoto, M., Node, K., Nakagami, H., Liao, Y., Grimm, M., Takemoto, Y., Kitakaze, M., and Liao, J.K. (2001). Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108, 1429-1437.
Ting, J.P., Kastner, D.L., and Hoffman, H.M. (2006). CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6, 183-195.
Ting, J.P., Lovering, R.C., Alnemri, E.S., Bertin, J., Boss, J.M., Davis, B.K., Flavell, R.A., Girardin, S.E., Godzik, A., Harton, J.A., Hoffman, H.M., Hugot, J.P., Inohara, N., Mackenzie, A., Maltais, L.J., Nunez, G., Ogura, Y., Otten, L.A., Philpott, D., Reed, J.C., Reith, W., Schreiber, S., Steimle, V., and Ward, P.A. (2008a). The NLR gene family: a standard nomenclature. Immunity 28, 285-287.
Ting, J.P., Willingham, S.B., and Bergstralh, D.T. (2008b). NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8, 372-379.
Tschopp, J., and Schroder, K. (2010). NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10, 210-215.
van de Veerdonk, F.L., Joosten, L.A., Devesa, I., Mora-Montes, H.M., Kanneganti, T.D., Dinarello, C.A., van der Meer, J.W., Gow, N.A., Kullberg, B.J., and Netea, M.G. (2009). Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. J Infect Dis 199, 1087-1096.
van de Veerdonk, F.L., Smeekens, S.P., Joosten, L.A., Kullberg, B.J., Dinarello, C.A., van der Meer, J.W., and Netea, M.G. (2010). Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107, 3030-3033.
Vinzing, M., Eitel, J., Lippmann, J., Hocke, A.C., Zahlten, J., Slevogt, H., N'Guessan P, D., Gunther, S., Schmeck, B., Hippenstiel, S., Flieger, A., Suttorp, N., and Opitz, B. (2008). NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180, 6808-6815.
Vonk, A.G., Netea, M.G., van Krieken, J.H., Iwakura, Y., van der Meer, J.W., and Kullberg, B.J. (2006). Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193, 1419-1426.
Wong, W.W., Dimitroulakos, J., Minden, M.D., and Penn, L.Z. (2002). HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16, 508-519.
Zhou, Q., and Liao, J.K. (2009). Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des 15, 3108-3115.
Zhou, R., Tardivel, A., Thorens, B., Choi, I., and Tschopp, J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11, 136-140.
PartII:
Andres, V. (2004). Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential. Cardiovasc Res 63, 11-21.
Barone, M.V., and Courtneidge, S.A. (1995). Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 378, 509-512.
Bebrevska, L., Bravo, L., Vandervoort, J., Pieters, L., Vlietinck, A., and Apers, S. (2007). Development and validation of an HPLC method for quality control of Pueraria lobata flower. Planta Med 73, 1606-1613.
Buttery, L.D., Springall, D.R., Chester, A.H., Evans, T.J., Standfield, E.N., Parums, D.V., Yacoub, M.H., and Polak, J.M. (1996). Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 75, 77-85.
Cai, X., Li, C., Du, G., and Cao, Z. (2008). Protective effects of baicalin on ligature-induced periodontitis in rats. J Periodontal Res 43, 14-21.
Chang, W.H., Chen, C.H., and Lu, F.J. (2002). Different effects of baicalein, baicalin and wogonin on mitochondrial function, glutathione content and cell cycle progression in human hepatoma cell lines. Planta Med 68, 128-132.
Chang, Y.L., Shen, J.J., Wung, B.S., Cheng, J.J., and Wang, D.L. (2001). Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol Pharmacol 60, 507-513.
Chawla, A., Boisvert, W.A., Lee, C.H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K., Evans, R.M., and Tontonoz, P. (2001). A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7, 161-171.
Chen, H.C., Chan, P.C., Tang, M.J., Cheng, C.H., and Chang, T.J. (1998). Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J Biol Chem 273, 25777-25782.
Chen, H.T., Yao, C.H., Chao, P.D., Hou, Y.C., Chiang, H.M., Hsieh, C.C., Ke, C.J., and Chen, Y.S. (2008a). Effect of ser
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47039-
dc.description.abstract第一部分: 在臨床上,HMG-CoA還原酶抑制劑 (statins) 已被廣泛作為降血脂的藥物,用於治療心血管疾病。除了可以治療高血脂病患,近年來也有研究報導指出,statins具有多重治療效果,例如:抑制發炎反應、抗腫瘤、甚至於具有免疫調節作用。而這些多重性的治療潛力的作用機轉主要是由於statins會造成異戊二烯 (isoprenoid)生合成路徑的受損,進而抑制Ras、RhoA、Cdc42或Rac1小分子G蛋白質相關的訊息傳遞路徑,進而調節細胞功能達到多元性的治療效果。近年研究報導發現在單核白血球(monocytes)或是人類週邊血液單核球細胞(peripheral blood mononuclear cells),給予statins的刺激會造成capsase-1的活化而誘導IL-1β的釋出。同時也指出異戊二烯對於caspase-1活性的抑制佔有重要的角色。由於inflammasome對於caspase-1活化及過度的IL-1β釋出與許多發炎疾病有關,故inflammasome複合體的調控機制在醫學上的研究與臨床上的應用也變得極為重要。因此,在這研究中我們深入探討statins刺激caspase-1活性的詳細作用機制。就目前報導已知,NLRP3 inflammasome的活化至少可受控於三大主要路徑,分別是 (1)外生性ATP鍵結P2X7受體(P2X7R)促使細胞內鉀離子流失,(2)細胞內活性氧化物(ROS)堆積及(3)溶酶體破裂(lysosomal rupture)釋出蛋白酶(如cathepsin B)。在我們的研究裡,將於人類單核球細胞株(THP-1)針對此三條路徑進行statins誘導的caspase-1活化的機制探討。首先發現Fluvastatin 及Lovastatin的處理的確可與脂多醣體(lipopolysaccharide,LPS)具有協同作用而達到誘發NLRP3活化。根據我們的結果,在LPS的處理下,statins活化caspase-1及誘導IL-1zh_TW
dc.description.abstractPartI: The HMG-CoA reductase inhibitors, namely statins, are widely used for treatment of lowering cholesterol in clinical. However, statins are not only therapeutically administered in hypercholesterolemia but also have multiple therapeutic potentials, such as in anti-inflammation, anti-tumor, and immunomodulation. Most of these pleiotropic and atypical actions are resulting from the impairment of isoprenoid biosynthesis and interference with signal cascades mediated by small G proteins. Recent studies further unexpectedly observe the stimulating effects of statins on caspase-1 activation and IL-1β secretion in monocytes and peripheral blood mononuclear cells, and suggest the crucial roles played by isoprenoids in the inhibition of caspase-1 activity. Since inflammasome-linked caspase-1 activation and overproduction of IL-1β are highly associated with many inflammatory diseases, understanding the cellular regulation of inflammasome complex becomes important in medical research and therapeutic prospect. Therefore, in this study we like to dissect the molecular mechanism in detail that underlies the stimulating effects of statins on caspase-1. In this respect, three commonly recognized mechanistic models for NLRP3 inflammasome activation (i.e. ATP/P2X7R/K+ efflux, ROS and lysosomal upture) were investigated in statin-induced caspase-1 activation in human THP-1 monocytes. We found fluvastatin or lovastatin treatment can synergize with LPS to trigger inflammasome NLRP3 activation. Moreover, statins-stimulated caspase-1 activation and IL-1β production in LPS-primed THP-1 cells are related to GGPP deficiency and P2X7R activation, but not to ROCK activity. The increases in endogenous ATP release and P2X7R gene expression account for the activation of P2X7R. We also provided evidence that statin-induced moderate ROS elevation is involved in the inflammasome activation. Moreover cathepsin B inhibitor was shown to reduce statin-induced events, suggesting the involvement of lysosomal instability in the action of statins. Lastly we showed the ability of statins to increase NLRP3 gene and protein expression in LPS-treated condition. Taken together, statin-induced enhancement of NLRP3 inflammasome activation in THP-1 monocytes covers multiple mechanisms, i.e. increases in ATP release, P2X7R expression and activation, ROS production, lysosomal rupture and NLRP3 expression. These data not only shed new insight into isoprenylation-dependent regulation of NLRP3 inflammasome, but also unmask mechanisms for statin-elicited inflammasome activation.
PartII: The Ger-Gen-Chyn-Lian-Tang (GGCLT) is a mixture of Chinese herbal medicines, which consists of Puerariae radix, Scutellariae radix, Coptidis rhizoma and Glycyrrhizae radix. Even though individual herbal medicine has been proved to prevent inflammation, cell proliferation, and/or cholesterol overload most in cellular studies, it remains unclear whether the medicine herbals in combination could achieve beneficial efficacy in atherosclerosis. In this study, we used animal and cellular models to evaluate the combination benefits in atherosclerotic progression. In animal model, GGCLT dosage (2g/kg/day) could decrease the serum levels of total cholesterol, LDL and TG in ApoEKO mice fed with high cholesterol diet. GGCLT and PDL-05 (serum metabolite of Pueraria lobat, also as the major metabolite constituent of GGCLT), however, did not prevent vascular smooth muscle cells and bone marrow-derived macrophages from proliferation and inflammation. Instead activation of IKK, p38, JNK, Akt and/or ERK, and increased expression of iNOS and/or COX-2 are induced with different extents by GGCLT and PDL-05. Therefore, our in vitro data rule out the involvement of anti-proliferation and anti-inflammation in GGCLT-induced in vivo benefits in atherosclerosis. Further studies in the biosynthesis, clearance and uptake of cholesterol are hopeful to unravel the action mechanism of GGCLT in atherosclerosis treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:45:53Z (GMT). No. of bitstreams: 1
ntu-99-R97443019-1.pdf: 5143685 bytes, checksum: 8dbbb8e8402bb531847de2929d1ee1cd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsPart I: The molecular mechanism of HMG-CoA reductase inhibitors in NLRP3 inflammasome activation.
Abbreviations……………………………………………………………3
Abstract…………………………………………………………………7
中文摘要…………………………………………………………………………9
Introduction……………………………………………………………11
Materials and Methods…………………………………………………………………31
Results…………………………………………………………………39
Discussion………………………………………………………………48
Figures…………………………………………………………………59
Appendix…………………………………………………………………77
References………………………………………………………………88
Part II: Therapeutic potential and action mechanisms of Ger-Gen-Chyn-Lian-Tang in atherosclerosis: from basic molecules to animal study.
Abbreviations…………………………………………………………111
Abstract………………………………………………………………114
中文摘要………………………………………………………………………115
Introduction…………………………………………………………116
Materials and Methods………………………………………………………………..130
Results…………………………………………………………………140
Discussion……………………………………………………………148
Figures…………………………………………………………………153
Appendix………………………………………………………………172
References……………………………………………………………173
dc.language.isoen
dc.subjectHMG-CoA 還原&#37238zh_TW
dc.subject葛根芩連湯zh_TW
dc.subject動脈硬化zh_TW
dc.subjectNLRP3 發炎體zh_TW
dc.subject抑制劑zh_TW
dc.subjectHMG-CoA reductase inhibitorsen
dc.subjectGer-Gen-Chyn-Lian-Tangen
dc.subjectatherosclerosisen
dc.subjectNLRP3 inflammasomeen
dc.title第一部分:HMG-CoA還原酶抑制劑調控NLRP3發炎體活化之機制探討
第二部分:探討葛根芩連湯在動脈硬化疾病上的應用潛力及作用機制
zh_TW
dc.titlePart I: The molecular mechanism of HMG-CoA reductase inhibitors in NLRP3 inflammasome activation
Part II: Therapeutic potential and action mechanisms of Ger-Gen-Chyn-Lian-Tang in atherosclerosis: from basic molecules to animal study
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏茂雄,符文美,陳炳常
dc.subject.keywordHMG-CoA 還原&#37238,抑制劑,NLRP3 發炎體,動脈硬化,葛根芩連湯,zh_TW
dc.subject.keywordHMG-CoA reductase inhibitors,NLRP3 inflammasome,atherosclerosis,Ger-Gen-Chyn-Lian-Tang,en
dc.relation.page187
dc.rights.note有償授權
dc.date.accepted2010-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved