請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曲芳華(Fang-Hua Chu) | |
| dc.contributor.author | Yueh-Te Chang | en |
| dc.contributor.author | 詹月德 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:45:28Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 范義彬、呂勝由、彭立京。2005。一種深具發展潛力的植物-山胡椒。台灣林業31: 61–62。
Aharoni A, Giri AP, Deuerlein S, Griepink F, Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W and Bouwmeester HJ. 2003. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866–2884. Akiyama K, Matsuzaki K and Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827. Alonso WR and Croteau R. 1991. Purification and characterization of the monoterpene cyclase gamma-terpinene synthase from Thymus vulgaris. Archives of Biochemistry and Biophysics 286: 511–517. Arctander S. 1994. Perfume and Flavor Chemicals (Aroma chemical)s; Allured Publishing Corp.: Carol Stream: U.S. Aubourg S, Lecharny A and Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics 267: 730–745. Bohlmann J, Meyer-Gauen G and Croteau R. 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences USA 95: 4126–4133. Bouwmeester HJ. 2006. Engineering the essence of plants. Nature Biotechnology 24: 1359–1361. Cane DE. 1990. Enzymic formation of sesquiterpenes. Chemical Reviews 90: 1089–1103. Cane DE, Xue Q and Fitzsimons BC. 1996. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis. Biochemistry 35: 12369–12376. Chang S, Puryear J and Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113–116. Choi EM and Hwang JK. 2004. Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells. Fitoterapia 75: 141–148. Chu FH, Kuo PM, Chen YR and Wang SY. 2009. Cloning and characterization of α-pinene synthase from Chamaecyparis formosensis Matsum. Holzforschung 63: 69–74. Davis E and Croteau R. 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topics in Current Chemistry 209: 53–95. Degenhardt J, Hiltpoldb I, Köllnera TG, Freyc M, Gierlc A, Gershenzona J, Hibbardd BE, Ellersiecke MR and Turlingsb CJ. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Plant Physiology 106 : 13213–13218. Degenhardt J, Gershenzon J, Baldwin LT and Kessler A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology 14: 169–176. Dicke M, Agrawal AA and Bruin J. 2003. Plants talk, but are they deaf? Trends in Plant Science 8: 403–405. Gershenzon J, McConkey ME and Croteau RB. 2000. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology 122: 205–214. Green SA. 2009. Structure-function relationships in plant terpene synthases. PhD Thesis-University of Auckland. Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN and Laing W. 2009. Defining the potassium binding region in an apple terpene synthase. Journal of Biological Chemistry 284: 8661–8669. Hanson JR. 2003. Natural Products: The Secondary Metabolites (R Soc of Chem, Cambridge, UK). Hwang JK, Choi EM and Lee JH. 2005. Antioxidant activity of Litsea cubeba. Fitoterapia 76: 684–686. Jennewein S and Croteau R. 2001. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Applied Microbiology and Biotechnology 57: 13–19. Keeling CI and Bohlmann J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170: 657–675. Kampranisa SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwel JM, Degenhardt J, Makrisa AM, Goodenough P and Johnson CB. 2007. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19: 1994-2005. Kessler A and Baldwin IT. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53: 299–328. Kohzakia K, Gomia K, YumikoYK, Ozawab R, Takabayashib J and Akimitsua K. 2009. Characterization of asabinene synthase gene from rough lemon (Citrus jambhiri). Plant Physiology 166: 1700–61704. Lagouri V, Blekas1 G, Tsimidou1 M, Kokkini S and Boskou1 D. 1993. Composition and antioxidant activity of essential oils from Oregano plants grown wild in Greece. Z Lebensm Unters Forsch 197: 1431–4630. Langenheim JH. 2003. Plant resins: chemistry, evolution, ecology and ethnobotany. Portland, OR, USA: Timber Press. Lichtenthaler HK. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 47–65. Martin D, Bohlmann J, Gershenzon J, Francke W and Seybold SJ. 2003. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften 90: 6173–6179. Martin DM, Gershenzon J and Bohlmann J. 2004. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway Spruce. Plant Physiology 132: 61586–61599. Mercier C and Chabardes P. 1994. Organometallic chemistry in industrial vitamin A and vitamin E synthesis. Pure and Applied Chemistry 66: 1509–61518. Mercke P, Kappers IF, Verstappen FW, Vorst O, Dicke M and Bouwmeester HJ. 2004. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiology 135: 2012–2024. Navia-Gine WG, Yuan JS, Mauromoustakos A, Murphy JB, Chen F and Korth KL. 2009. Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiology and Biochemistry 47: 416–425. Peters RJ, Flory JE, Jetter R, Ravn MM, Lee HJ, Coates RM and Croteau RB. 2000. Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the ‘‘pseudomature’’ recombinant enzyme. Biochemistry 39: 15592–15602. Randrianalijaona JA, Ramanoelina AR, Rasoarahona JR and Gaydou EM. 2005. Seasonal and chemotype influences on the chemical composition of Lantana camara L.: Essential oils from Madagascar. Analytica Chimica Acta 545: 46–52. Ro DK and Bohlmann J. 2006. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67: 15720–15728. Scott AC, Anderson JM and Anderson HM. 2004. Evidence of plant–insect interactions in the upper Triassic Molteno formation of South Africa. Journal of the Geological Society 161: 401–410. Seemann M, Zhai GZ, Kraker JW, Paschall CM, Christianson DW and Cane DE. 2002. Pentalenene synthase. Analysis of active site residues by sitedirected mutagenesis. Journal of American Chemistry Society 124: 7681–7689. Tarshis L, Proteau PJ, Kellogg B, Sacchettin J and Poulter CD. 1996. Regulation of product chain length by isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences 93: 15018–15023. Trapp SC and Croteau RB. 2001. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158: 811–832. Turner G, Gershenzon J, Nielson EE, Froehlich JE and Croteau R. 1999. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiology 120: 879–886. Ujino-Ihara T, Kanamori H, Yamane H, Taguchi1 Y, Namiki N, Mukai Y, Yoshimura K and Tsumura Y. 2005. Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Molecular Biology 59: 895–907. Williams DC, McGarvey DJ, Katahira EJ and Croteau R. 1998. Truncation of limonene synthase preprotein provides a fully active ‘Pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37: 12213–12220. Wise ML and Croteau R. 1999. Biosynthesis of monoterpenes. Isoprenoids Including Carotenoids and Steroids. Elsevier, Oxford 2: 97–153. Xu YH, Wang JW, Wang S, Wang JY and Chen XY. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiology 135: 507–515. Yamasaki Y and Akimitsu KJ. 2007. Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense. Plant Physiology 164: 1436–1448. Zheng SJ and Dicke M. 2008. Ecological genomics of plant-insect interactions: from gene to community. Plant Physiology 146: 812–817. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47022 | - |
| dc.description.abstract | 山胡椒 (Litsea cubeba (Lour) Persoon),為台灣常見的闊葉植物,其精油可應用於食品以及醫藥製品,具消腫、止痛等功效。據前人研究指出,山胡椒精油的單萜成分具有良好的抗發炎活性。本試驗採集山胡椒不同組織,利用基因資料庫中木本闊葉植物之單萜合成酶基因序列設計退化性引子對,並藉由聚合酶連鎖反應及 cDNA 末端快速擴增法,得到三個山胡椒單萜合成酶基因全長,分別命名為LcTPS1、LcTPS2與LcTPS3,其轉譯區序列長度分別為 1750 bp、1743 bp、與1743 bp,其中LcTPS2與LcTPS3兩個核酸序列具高達 97% 的相似度。為了解該基因在植物體之表現型態,本研究利用反轉錄聚合酶連鎖反應與即時聚合酶連鎖反應觀察三個單萜合成酶基因在山胡椒各部位組織的表現狀況,結果顯示LcTPS1在雄樹的葉子中表現量最高,於未成熟果的表現量最低;LcTPS2在成熟果的表現量最高,於雌樹的葉子表現量最低;而LcTPS3則在未成熟果表現量最高,於枝條的表現量最低。由鄰近連接演化樹分析結果,三個 LcTPS 基因皆坐落在TPS-b的分群之中,其中 LcTPS2 與 LcTPS3 被分類在同一組次分群中而與LcTPS1區分開來。而由蛋白質預測分析結果,LcTPS1之蛋白質大小約為67.1 kDa,而LcTPS2與LcTPS3則約為67.4 kDa。將LcTPS1、LcTPS2與LcTPS3基因分別構築於大腸桿菌 (Escherichia coli BL21) 用之載體 pTYB12 得到可溶部蛋白質,以體外反應的方式驗證 LcTPS1 產物為反式-蘿勒烯;LcTPS2 產物為α-側柏烯;LcTPS3 則具雙重功能,其產物為α-側柏烯與 (+)-香檜烯。目前已有研究指出α-側柏烯與(+)-香檜烯具有良好的上真菌活性,反式-蘿勒烯具有良好的抗氧化活性。 | zh_TW |
| dc.description.abstract | Mountain spicy tree (Litsea cubeba (Lour) Persoon) is a primitive evergreen tree in Taiwan. Previous studies had showed that the fruit of L. cubeba possess the dispels rheumatism, detumescence, detoxify, and analgetic effect, and in the essential oil of L. cubeba, the dominant component is monoterpenes, which have anti-inflammatory activity. To elucidate the biosynthesis of monoterpenes which have bioactivity in L. cubeba, three cDNAs corresponding to monoterpene synthase genes expressed in different tissues of L. cubeba were isolated, and the corresponding enzymes were functionally characterized in vitro. To isolate cDNAs corresponding to monoterpene synthases of L. cubeba, two pairs of primers were designed according to the monoterpene synthases of woody plant. Monoterpene DNA sequences were collected from NCBI database, and polymerase chain reaction (PCR), rapid amplication of cDNA end (RACE) were used for getting full sequence of L. cubeba monoterpene synthases. These genes obtained were named LcTPS1, LcTPS2, and LcTPS3, which have 1749 bp (base pair), 1743 bp and 1743 bp coding region respectively. To investigate expression levels of LcTPS1, LcTPS2, and LcTPS3 at different tissues of L. cubeba, reverse transcription PCR and real-time PCR were used for detection of transcript levels for all three genes at different tissues. The results showed that LcTPS1 genes were most prominent in the leaf of the male trees, LcTPS2 genes were most prominent in development fruit tissue, and LcTPS3 genes were prominent in mature fruit tissue. Phylogenetic analyses indicated that LcTPS1, LcTPS2, and LcTPS3 all belonged to TPS-d terpene family, which represents the angiosperm monoterpene synthase genes. To functionally characterize corresponding enzymes of LcTPS1, LcTPS2, and LcTPS3 in vitro, LcTPS1, LcTPS2, and LcTPS3 were expressed in E. coli protein expression system for pure protein. Recombinant LcTPS1 converted geranyl diphosphate to trans-ocimene, LcTPS2 converted geranyl diphosphate to α-thujene while LcTPS3 is a bifunctional enzyme that converted geranyl diphosphate to α-thujene and (+)-sabinene respectively. According to previous studies, α-thujene and sabinene possess great anti-fungal activity and trans-ocimene possesss antioxidant activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:45:28Z (GMT). No. of bitstreams: 1 ntu-99-R97625011-1.pdf: 2866841 bytes, checksum: 8a7b902b9ec170e75235f9df68bbf341 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書..........................................ii
誌謝.....................................................iii 摘要......................................................iv Abstract...................................................v 目錄.....................................................vii 圖目錄.....................................................x 表目錄...................................................xii 一、前言.................................................. 1 二、文獻回顧.............................................. 4 2.1 萜類化合物之種類.......................................4 2.2 萜類之生合成路徑...................................... 5 2.3 萜類化合物與植物生理的關...............................8 2.4 單萜合成酶............................................10 2.5萜類合成酶基因之鑑定...................................12 2.6 山胡椒精油之單萜成分................................. 14 三、材料與方法........................................... 15 3.1 試驗試材..............................................15 3.1.1 植物試材........................................... 15 3.1.2 培養基與溶劑配方....................................15 3.1.2 載體之選用..........................................16 3.1.3 菌株之選用..........................................16 3.2 試驗方法..............................................17 3.2.1 山胡椒單萜基因之選殖............................... 17 3.2.2 譜系分析........................................... 18 3.2.3 蛋白質質體的建構................................... 19 3.2.4 重組蛋白質表現..................................... 20 3.2.5 聚丙烯醯胺膠體電泳..................................20 3.2.6 免疫雜合反應........................................21 3.2.7 蛋白質酵素反應......................................21 3.2.8 化合物分析..........................................21 3.2.9 反轉錄聚合酶連鎖反應 ...............................22 3.2.10 即時聚合酶連鎖反應.................................22 四、試驗結果..............................................23 4.1 LcTPS1、LcTPS2、LcTPS3 基因序列分析................. 22 4.2 質體運輸胜肽之預測.................................. 27 4.3 演化樹分析...........................................29 4.4 LcTPS1、LcTPS2、LcTPS3 在山胡椒不同組織之表現情況... 30 4.5 蛋白質結構預測...................................... 33 4.6 重組蛋白表現........................................ 35 4.7 蛋白質反應與產物定性................................ 36 五、討論..................................................39 5.1 LcTPS1、LcTPS2、LcTPS3 之功能性保守序列............. 39 5.2 單萜合成酶單產物或多產物功能..........................40 5.3 trans-ocimene 之生合成路徑............................41 5.4 α-thujene 與 (+)-sabinene 之生合成路徑...............42 5.5 單萜產物之生物活性................................... 45 5.6 LcTPS1、LcTPS2、LcTPS3 於山胡椒不同組織的表現.........46 5.7 演化樹分析.......................................... 47 5.8 蛋白質結構分析.......................................48 六、結論................................................. 51 七、參考文獻..............................................52 八、附錄..................................................58 附錄(一)引子序列表..................................................58 附錄(二)圖25簡寫對照表..................................................60 | |
| dc.language.iso | zh-TW | |
| dc.subject | α-側柏烯 | zh_TW |
| dc.subject | 單萜 | zh_TW |
| dc.subject | 山胡椒 | zh_TW |
| dc.subject | 反式-蘿勒烯 | zh_TW |
| dc.subject | (+)-香檜烯 | zh_TW |
| dc.subject | α-thujene | en |
| dc.subject | trans-ocimene | en |
| dc.subject | Litsea cubeba (Lour.) Persoon | en |
| dc.subject | monoterpenes | en |
| dc.subject | (+)-sabinene | en |
| dc.title | 山胡椒單萜合成酶基因之選殖與功能定性 | zh_TW |
| dc.title | Molecular Cloning and Characterization of Monoterpene Synthases from Litsea cubeba (Lour.) Persoon | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王升陽(Sheng-Yang Wang),張上鎮(Shang-Tzen Chang),何政坤(Cheng-Kuen Ho),陳建德(Chien-Teh Chen) | |
| dc.subject.keyword | 單萜,山胡椒,反式-蘿勒烯,(+)-香檜烯,α-側柏烯, | zh_TW |
| dc.subject.keyword | Litsea cubeba (Lour.) Persoon,monoterpenes,(+)-sabinene,α-thujene,trans-ocimene, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
