Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文哲(Wen-Jer Wu)
dc.contributor.authorMauricio Ernesto Alarcón Álvarezen
dc.contributor.author莫里斯阿拉貢zh_TW
dc.date.accessioned2021-06-15T05:45:25Z-
dc.date.available2016-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citationReferences
Alarcón, M. E., C. G. Huang, Y. S. Tsai, W. J. Chen, A. K. Dubey, and W. J. Wu. 2011. Life cycle and morphology of Steinina ctenocephali (Ross, 1909) comb. nov. (Eugregarinorida: Actinocephalidae), a gregarine of Ctenocephalides felis (Siphonaptera: Pulicidae) in Taiwan. Zool. Stud. (accepted).
Ashworth, J. H., and T. Rettie. 1912. On a gregarine Steinina rotundata nov. sp. present in the mid-gut of bird-fleas of the genus Ceratophylus. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 86: 31-38.
Beard, C. B., J. F. Butler, and D. W. Hall. 1990. Prevalence and biology of endosymbionts of fleas (Siphonaptera: Pulicidae) from dogs and cats in Alachua County, Florida. J. Med. Entomol. 27: 1050-1061.
Benesi, F. J., M. de Campos Pereira, C. S. Cardoso de Sá, D. L. Howard, C. M. C. Teixeira, and C. E. Larsson. 1998. Cat flea infestation in a newborn jersey calf in Brazil. Rev. Bras. Parasitol. Vet. 7: 157-160.
Berdoy, M., J. P. Webster, and D. W. Macdonald. 2000. Fatal attraction in rats infected with Toxoplasma gondii. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 267: 1591-1594.
Bhatia, B. L. 1924. The genus Stomatophora Drzewecki. Q. J. Microsc. Sci. 68: 481-512.
Bossard, R. L., M. W. Dryden, and A. B. Broce. 2002. Insecticide susceptibilities of cat fleas (Siphonaptera: Pulicidae) from several regions of the United States. J. Med. Entomol. 39: 742-746.
Bush, A. O., J. C. Fernandez, G. W. Esch, and J. R. Seed. 2001. Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, UK. 566 pp.
Chappell, C. L., P. C. Okhuysen, and A. C. White, Jr. 2003. Cryptosporidium parvum: Infectivity, pathogenesis and the host-parasite relationship. pp. 19-49. In: R. C. A. Thompson, A. Armson and U. M. Ryan (eds.), Cryptosporidium: From Molecules to Disease. Elsevier B.V., Amsterdam, The Netherlands.
Chen, W. J., S. T. Wu, C. Y. Chow, and C. H. Yang. 1997. Sporogonic development of the gregarine Ascogregarina taiwanensis (Lien and Levine) (Apicomplexa: Lecudinidae) in its natural host Aedes albopictus (Skuse) (Diptera: Culicidae). J. Eukaryot. Microbiol. 44: 326-331.
Cleveland, L. R. 1959. Sex induced with ecdysone. Proc. Natl. Acad. Sci. USA. 45: 747-753.
Clopton, R. E. 2002. Phylum Apicomplexa Levine, 1970: Order Eugregarinorida Léger, 1900. pp. 205-288. In: J. J. Lee, G. Leedale, D. Patterson, and P. C. Bradbury (eds.), Illustrated Guide to the Protozoa, 2nd edition. Society of Protozoologists, Lawrence, Kansas.
Clopton, R. E. 2004. Standard nomenclature and metrics of plane shapes for use in gregarine taxonomy. Comp. Parasitol. 71: 130-140.
Clopton, R. E. 2009. Phylogenetic relationships, evolution, and systematic revision of the septate gregarines (Apicomplexa: Eugregarinorida: Septatorina). Comp. Parasitol. 76: 167-190.
Clopton, R. E., and R. E. Gold. 1996. Host specificity of Gregarina blattarum among five species of domiciliary cockroaches. J. Invertebr. Pathol. 67: 219-223.
Clopton, R. E., J. Janovy, Jr., and T. J. Percival. 1992. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78: 334-337.
Corbel, J. C. 1964. Infestations expérimentales de Locusta migratoria L. (insecte orthoptère) par Gregarina garnhami Canning (Sporozoaire gregarinomorphe): relation entre le cycle de l'hôte et celui du parasite. C. R. Acad. Sci. (Paris) 259: 207-210.
Dasgupta, B. 1958. A new schizogregarine, Mattesia orchopiae n. sp., in a flea of squirrels in England. Parasitology 48: 375-381.
De Avelar, D. M., and P. M. Linardi. 2008. Seasonality and prevalence rates of Steinina sp. (Eugregarinorida: Actinocephalidae) in Ctenocephalides felis felis (Siphonaptera: Pulicidae) from dogs captured in Belo Horizonte, Minas Gerais, Brazil. J. Med. Entomol. 45: 1139-1142.
De Avelar, D. M., A. S. Bussolotti, M. do C. A. Ramos, and P. M. Linardi. 2007. Endosymbionts of Ctenocephalides felis felis (Siphonaptera: Pulicidae) obtained from dogs captured in Belo Horizonte, Minas Gerais, Brazil. J. Invertebr. Pathol. 94: 149-152.
Dryden, M. W., and M. K. Rust. 1994. The cat flea: biology, ecology, and control. Vet. Parasitol. 52: 1-19.
Field, S. G., and N. K. Michiels. 2006. Acephaline gregarine parasites (Monocystis sp.) are not transmitted sexually among their lumbricid earthworm hosts. J. Parasitol. 92: 292-297.
Gould, S. B., W. H. Tham, A. F. Cowman, G. I. McFadden, and R. F. Waller. 2008. Alveolins, a new family of cortical proteins that define the protist infrakingdom alveolata. Mol. Biol. Evol. 25: 1219-1230.
Guindon, S., and O. Gascuel. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704.
Gupta, S. K., and D. P. Haldar. 1987. Steinina palorusi n. sp., a new species of septate gregarines (Apicomplexa: Sporozoea) from the larva of a tenebrionid beetle. Arch. Fur Protistenkd. 133: 135-144.
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
Hecker, K. R., M. R. Forbes, and N. J. Leonard. 2002. Parasitism of damselflies Enallagma boreale by gregarines: sex biases and relations to adult survivorship. Can. J. Zool. 80: 162-168.
Henderson, G., S. A. Manweiler, W. J. Lawrence, R. J. Tempelman, and L. D. Foil. 1995. The effects of Steinernema carpocapsae (Weiser) application to different life stages on adult emergence of the cat flea Ctenocephalides felis (Bouché). Vet. Dermatol. 6: 159-163.
Hinkle, N. C. 2008. Fleas. pp. 155-173. In: H. Kampen, X. Bonnefoy, and K. Sweeney. Public Health Significance of Urban Pests. WHO publications, Geneva.
Hinkle, N. C., P. G. Koehler, and W. H. Kern. 1991. Hematophagous strategies of the cat flea (Siphonaptera: Pulicidae). Fla. Entomol. 74: 377-385.
Hinkle, N. C., M. K. Rust, and D. A. Reierson. 1997. Biorational approaches to flea (Siphonaptera: Pulicidae) suppression. J. Agric. Entomol. 14: 309-321.
Hopkins, G. H. E., and M. Rothschild. 1953. An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum. Volume I. Tungidae and Pulicidae. Cambridge University Press, London. 361 pp.
Hsu, M. H. 2001. Mating and parental investment of cat fleas, Ctenocephalides felis (Bouché) (Siphonaptera: Pulicidae). Doctoral dissertation, National Taiwan University, Taiwan. 101 pp.
Hsu, M. H., and W. J. Wu. 2000. Effects of multiple mating on female reproductive output in the cat flea (Siphonaptera: Pulicidae). J. Med. Entomol. 37: 828-834.
Hsu, M. H., and W. J. Wu. 2001. Off-host observations of mating and postmating behaviors in the cat flea (Siphonaptera: Pulicidae). J. Med. Entomol. 38: 352-360.
Hsu, M. H., Y. C. Hsu, and W. J. Wu. 2002. Consumption of flea faeces and eggs by larvae of the cat flea, Ctenocephalides felis. Med. Vet. Entomol. 16: 445-447.
Huang, C. G., K. H. Tsai, W. J. Wu, and W. J. Chen. 2006. Intestinal expression of H+ V-ATPase in the mosquito Aedes albopictus is tightly associated with gregarine infection. J. Eukaryot. Microbiol. 53: 127-135.
Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
Johny, S., A. Merisko, and D. W. Whitman. 2007. Efficacy of eleven antimicrobials against a gregarine parasite (Apicomplexa: Protozoa). Ann. Clin. Microbiol. Antimicrob. 6: 1-8.
Kelly, P. J. 2004. A review of bacterial pathogens in Ctenocephalides felis in New Zealand. New Zeal. Vet. J. 52: 352-357.
Krämer, F., and N. Mencke. 2001. Flea Biology and Control: The Biology of the Cat Flea. Control and Prevention with Imidacloprid in Small Animals. Springer, Berlin, New York. 192 pp.
Krasnov, B. R. 2008. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press, U.K. 650 pp.
Krasnov, B. R., I. S Khokhlova, I. Oguzoglu, and N. V. Burdelova. 2002. Host discrimination by two desert fleas using an odour cue. Anim. Behav. 64: 33-40.
Krasnov, B. R., I. S. Khokhlova, and G. I. Shenbrot. 2004a. Sampling fleas: the reliability of host infestation data. Med. Vet. Entomol. 18: 232-240.
Krasnov, B. R., G. I. Shenbrot, I. S. Khokhlova, and R. Poulin. 2004b. Relationship between parasite abundance and the taxonomic distance among parasite’s host species: an example with fleas parasitic on small mammals. Int. J. Parasitol. 34: 1289-1297.
Krasnov, B. R., N. V. Burdelova, I. S. Khokhlova, G. I. Shenbrot, and A. Degen. 2005. Larval interspecific competition in two flea species parasitic on the same rodent host. Ecol. Entomol. 30: 146-155.
Leander, B. S. 2008. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24: 60-67.
Leander, B. S., and P. J. Keeling. 2004. Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from HSP90 and actin phylogenies. J. Phycol. 40: 341-350.
Leander, B. S., R. E. Clopton, and P. J. Keeling. 2003. Phylogeny of gregarines (Apicomplexa) as inferred from small subunit rDNA and β-tubulin. Int. J. Syst. Evol. Microbiol. 53: 345-354.
Leander, B. S., S. A. J. Lloyd, W. Marshall, and S. C. Landers. 2006. Phylogeny of marine gregarines (Apicomplexa), Pterospora, Lithocystis and Lankesteria, and the origin(s) of coelomic parasitism. Protist 157: 45-60.
Lèger, L., and O. Duboscq. 1904. Nouvelles recherches sur les gré et l’épithélium intestinal des trachéates. Arch. Protistenk. 4: 335-383. (cited in Clopton, 2002).
Lehane, M. J. 1991. Biology of Blood-sucking Insects. Chapman and Hall, New York, U.S.A. 288 pp.
Leuckart, R. 1861. Arch. f. Natuegesch. Bd. 2. pp. 263. (cited in Ashworth and Rettie, 1912).
Levine, N. D. 1988. The protozoan phylum Apicomplexa. I and II. CRC Press, Boca Raton, Florida, U.S.A.
Lewis, R. E. 1972. Notes on the geographical distribution and host preferences in the order Siphonaptera. Part I. Pulicidae. J. Med. Entomol. 9: 511-520.
Lewis, R. E. 1998. Résume´ of the Siphonaptera (Insecta) of the world. J. Med. Entomol. 35: 377-389.
Linardi, P. M., and R. L. Nagem. 1972. Observações sobre o ciclo evolutivo de Ctenocephalides felis (Bouché, 1935) (Siphonaptera: Pulicidae) e sua sobrevida fora do hospedeiro. Bol. Mus. Hist. Nat. UFMG Zool. 13: 1-23.
Linardi, P. M., M. De Maria, and J. R Botelho. 1997. Effects of larval nutrition on the postembryonic development of Ctenocephalides felis felis (Siphonaptera: Pulicidae). J. Med. Entomol. 34: 494-497.
Locklin, J. L., and D. S. Vodopich. 2010. Patterns of gregarine parasitism in dragonflies: host, habitat, and seasonality. Parasitol. Res. 107: 75-87.
Malavasi, A., A. B. Da Cunha, J. S. Morgante, and J. Marques. 1976. Relationships between the gregarine Schneideria schneiderae and its host Trichosia pubescens (Diptera, Sciaridae). J. Invertebr. Pathol. 28: 363-371.
Marshall, A. G. 1981. The Ecology of Ectoparasitic Insects. Academic Press, New York. 459 pp.
McCoy, C. A., B. Broce, and M. W. Dryden. 2008. Flea blood feeding patterns in cats treated with oral nitenpyram and the topical insecticides imidacloprid, fipronil and selamectin. Vet. Parasitol. 156: 293-301.
McLaughlin, R. E. 1965. Mattesia grandis n. sp., a sporozoan pathogen of the boll weevil, Anthonomus grandis Boheman. J. Protozool. 12: 405-413.
Mehlhorn, H., ed. 2008. Encyclopedia of Parasitology, 3rd ed. Springer, Berlin, Heidelberg. pp. 243-251.
Mourya, D. T., G. Geevarghese, and M. D. Gokhale. 1996. Ascogregarina cheopisi sp. n. (Protozoa, Apicomplexa) from the flea Xynopsylla cheopis. Entomon 21: 103-104.
Mullen, G., and L. Durden. 2009. Medical and Veterinary Entomology. Academic Press, San Diego, CA. 637 pp.
Nicholas, K. B., and H. B. Nicholas, Jr. 2007. GeneDoc: a tool for editing and annotating multiple sequence alignments. Pittsburgh Supercomputing Center's National Resource for Biomedical Supercomputing.
(http://www.nrbsc.org/downloads/)
Nowlin, N. 1922. Correlation of the life cycle of a parasite with the metamorphosis of its host. J. Parasitol. 8: 153-160.
Page, R. D. M. 1996. TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
Pereira, R. M., D. F. Williams, J. J. Becnel, and D. H. Oi. 2002. Yellow-head disease caused by a newly discovered Mattesia sp. in populations of the red imported fire ant, Solenopsis invicta. J. Invertebr. Pathol. 81: 45-48.
Perry, R. D., and J. Fetherston. 1997. Yersinia pestis-etiologic agent of plague. Clin. Microbiol. Rev. 10: 35-66.
Porchet-Henneré, E. 1969. Corrélations entre le cycle d‘une Coccidie: Coelotropha durchoni Vivier, et celui de son hôte Nereis diversicolor O. F. Müller (Annélide Polychète). Z. Parasitenk. 31: 299-314.
Posada, D. 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.
Poulin, R. 2005. Relative infection levels and taxonomic distances among the host species used by a parasite: insight into parasite specialization. Parasitology 130: 109-115.
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org)
Ross, E. H. 1909. A gregarine parasitic in the dog flea, Ctenocephalus serraticeps. Ann. Trop. Med. Parasit. 2: 359-363.
Rothschild, M., Y. Schlein, and S. Ito.1986. A Colour Atlas of Insect Tissues via the Flea. Wolfe Pub., London. 179 pp.
Rueckert, S., and B. S. Leander. 2008a. Morphology and phylogenetic position of two novel marine gregarines (Apicomplexa, Eugregarinorida) from the intestines of North-eastern Pacific ascidians. Zool. Scr. 37: 637-645.
Rueckert, S., and B. S. Leander. 2008b. Gregarina. Gregarines. Version 23 September 2008 from http://tolweb.org/Gregarina/124806/2008.09.23 in The Tree of Life Web Project. (http://tolweb.org/)
Rueckert, S., C. Chantangsi, and B. S. Leander. 2010. Molecular systematics of marine gregarines (Apicomplexa) from North-eastern Pacific polychaetes and nemerteans, with descriptions of three novel species: Lecudina phyllochaetopteri sp. nov., Difficilina tubulani sp. nov. and Difficilina paranemertis sp. nov. Int. J. Syst. Evol. Microbiol. 60: 2681-2690.
Rust, M. K. 2005. Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends Parasitol. 5: 232-236.
Rust, M. K., N. C. Hinkle, M. Waggoner, N. Mencke, O. Hansen, and M. B. Vaughn. 2001. The Influence of imidacloprid on adult cat flea feeding. Compend. Contin. Educ. Pract. Vet. (Suppl). 23: 1-4.
Savage, J. M. 1995. Systematics and the biodiversity crisis. BioScience 45: 673-679.
Schilder, R. J., and J. H. Marden. 2006. Metabolic syndrome and obesity in an insect. Proc. Natl. Acad. Sci. USA. 103: 18805-18809.
Shryock, J. A., and R. M. Houseman. 2005. A comparison of fecal protein content in male and female cat fleas, Ctenocephalides felis (Bouche) (Siphonaptera: Pulicidae). Fla. Entomol. 88: 335-337.
Shyu, M. H., T. C. Hsu, and W. J. Wu. 1993. Seasonal abundance of cat flea, Ctenocephalides canis (Bouché) (Siphonaptera: Pulicidae), in Taipei city. Chin. J. Entomol. 13: 59-67. (In Chinese with English abstract).
Silverman, J., and A. G. Appel. 1994. Adult cat flea (Siphonaptera: Pulicidae) excretion of host blood proteins in relation to larval nutrition. J. Med. Entomol. 31: 265-271.
Silverman, J., and M. K. Rust. 1985. Extended longevity of the pre-emerged adult cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Ann. Entomol. Soc. Am. 78: 763-768.
Strickland, C. 1912. Agrippina bona nov. gen. et nov. sp. representing a new family of gregarines. Parasitology 5: 97-108.
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
Tanada, Y., and H. K. Kaya. 1993. Insect Pathology. Academic Press, New York. 666 pp.
Thomas, R. E., L. Wallenfaels, and I. Popiel. 1996. On-host viability and fecundity of Ctenocephalides felis (Siphonaptera: Pulicidae), using a novel chambered flea technique. J. Med. Entomol. 33: 250-256.
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
Toso, M. A., and C. K. Omoto. 2007. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 54: 66-72.
Tsai, K. H., H. Y. Lu, J. H. Huang, P. J. Wang, H. C. Wang, C. G. Huang, W. J. Wu, and P. Y. Shu. 2008. Rickettsia felis in cat fleas in Taiwan. Vector-Borne Zoon. Dis. 9: 561-563.
Tsai, K. H., C. G. Huang, C. T. Fang, P. Y. Shu, J. H. Huang, and W. J. Wu. 2011. Prevalence of Rickettsia felis and the first identification of Bartonella henselae Fizz/CAL-1 in cat fleas (Siphonaptera: Pulicidae) from Taiwan. J. Med. Entomol. 48: 445-452.
Tsai, Y. S. 2005. The life cycle of a gregarine (Apicomplexa: Eugregarinorida: Septatorina) from cat flea (Ctenocephalides felis (Bouché)) (Siphonaptera: Pulicidae) in Taiwan. Master thesis (unpublished), National Taiwan University, Taiwan. 40 pp.
Valigurová, A., and B. Koudela. 2006. Ultrastructural study of developmental stages of Mattesia dispora (Neogregarinoirida: Lipotrophidae), a parasite of the flour moth Ephestia kuehniella (Lepidoptera). Eur. J. Protistol. 42: 313-323.
Valigurová, A., L. Hofmannová, B. Koudela, and J. Vávra. 2007. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J. Eukaryot. Microbiol. 54: 495-510.
Valigurová, A., V. Michalková, and B. Koudela. 2009. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? Int. J. Parasitol. 39: 1235-1242.
Votýpka, J., L. Lantová, K. Ghosh, H. R. Braig, and P. Volf. 2009. Molecular characterization of gregarines from sand flies (Diptera: Psychodidae) and description of Psychodiella n. g. (Apicomplexa: Gregarinida). J. Eukaryot. Microbiol. 56: 583-588.
Wall, R., and D. Shearer. 1997. Veterinary Entomology: Arthropod Ectoparasites of Veterinary Importance. 1st ed. Chapman and Hall. London, UK. 439 pp.
Wellmer, L. 1910. Actinocephalus parvus , n. sp., im Darm der larven von Ceratophylus fringillae (Wlk.) und C. gallinae (Schrank). Zool. Anz.35: 553-553.
Whiting, M. F., A. S. Whiting, M. W. Hastriter, and K. Dittmar. 2008. A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24: 677-707.
William, B. 1993. Reproductive success of cat fleas, Ctenocephalides felis, on calves as unusual host. Med. Vet. Entomol. 7: 94-98.
Zuk, M. 1987. The effects of gregarine parasites, body size, and time of day on spermatophore production and sexual selection in field crickets. Behav. Ecol. Sociobiol. 21: 65-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47020-
dc.description.abstract摘要
貓蚤 (Ctenocephalides felis) 是世界性害蟲,可攜帶多種人畜疾病病原,每年全世界也花費數十億的金錢防治與根除貓蚤。而簇蟲 (gregarines) 是原生動物類的寄生蟲,分類上屬於頂複合器門 (Apicomplexa),通常簇蟲生存在海生或陸生無脊椎生物的腸腔中,簇蟲大多具有宿主專一性的生活史。因此,研究貓蚤的簇蟲與其宿主的影響與關係,或許可以應用於跳蚤的生物防治。本論文研究目標為研究台灣的貓蚤簇蟲 (Steinina ctenocephali (Ross)) 在貓蚤的生活史、檢視不同時期的簇蟲形態、調查簇蟲與貓蚤族群動態變化、最後再探討貓蚤簇蟲對宿主的影響。我們於台北市動物之家以蚤梳法調查貓狗的外寄生蟲3年,記錄跳蚤種類、性別與數量,並觀察感染貓蚤簇蟲的情形,分析影響簇蟲感染的因子,部份感染的簇蟲用來進行分類與生活史研究,另外也解剖感染簇蟲的貓蚤,取其簇蟲粹取DNA進行SSU rRNA基因PCR後進行序列分析,建構簇蟲分子系統學。感染貓蚤部份以微小盒飼養,收取簇蟲卵囊體,再以此進行感染試驗,探討貓蚤簇蟲對貓蚤的影響。結果顯示,貓蚤簇蟲完全在貓蚤腸道中發育,首先,非活動期的卵囊體可以在環境中存活很久,甚至長達140天,當卵囊體被幼蟲食入後,厚壁的卵囊體會在腸道中釋出孢子體。這些孢子體會先變成胞內時期,並在貓蚤吸血後而開始發育。剛羽化的貓蚤在吸血3-5天後會出現發育中的孢子體,並利用頂器附著在腸壁細胞上。行有性生殖時,兩隻簇蟲會前後結合,形成配子體。當配子體成熟後會再釋出其中數以千計的卵囊體於貓蚤腸道中。另外,我們增幅出1778 bps簇蟲的SSU rRNA基因,與其他簇蟲進行最大相似度與Bayesian分析,發現貓蚤簇蟲與Monocystis agilis Stein, Prismatospor aevansi Ellis 及Syncystis mirabilis Schneider相近,但與Gregarina屬不在同一單系群中。再加上形態的差異,顯示Ross當初將貓蚤簇蟲置於Gregarina屬是有問題的。依形態結果,貓蚤簇蟲應該隸屬於Steinina屬。其次三年調查結果顯示,炎熱的季節簇蟲感染率比寒冷的季節高;雌貓蚤簇蟲感染率高於雄蚤;狗身上的貓蚤比較容易感染簇蟲。最後,感染試驗顯示貓蚤簇蟲不具有生物防治貓蚤的潛能,因為簇蟲感染對貓蚤存活率與羽化率沒有任何的影響。但是,有趣的是高濃度卵囊體處理組,貓蚤的發育時間有顯著縮短的現象。
zh_TW
dc.description.abstractAbstract
The cat flea, Ctenocephalides felis, is a worldwide pest able to transmit pathogens of humans and animals so that billions of dollars worldwide annually are devoted to their control and/ or eradication. Gregarines are protozoan endoparasite members of the phylum Apicomplexa living in the internal cavities of marine and terrestrial invertebrate. The group is considered to be represented by species which are mostly host-specific with monoxenous life cycle. Thus, once gregarines were found in cat fleas in Taiwan we decide gain insight into the relationship. These data may represent the baseline information regarding how to use it as potential biocontrol agents against cat flea. This study therefore aims to study life history, morphology, taxonomy and molecular systematics, population dynamics and host-parasite relationship (i.e., effects) of Steinina ctenocephali (Ross) (Gregarine, Apicomplexa) isolated from cat fleas in Taiwan. Fleas were collected in Taipei Animal Shelter, by combing cats and dogs over a 3-year period. Under stereomicroscope S. ctenocephali-infected fleas were: i) dissected and S. ctenocephali’s stages, either microphotographed “in vivo”, stored for conventional DNA isolation (PCR, cloning, and sequencing), or electronic microscopy processing and ii) left alive and reared in microcells for recovery of S. ctenocephali oocysts. Sex of the infected fleas, type of host (i.e., dogs and cats), prevalence and intensity of gregarine infection were recorded. The whole life cycle of S. ctenocephali occurred exclusively in the flea’s gut. The oocysts (infective stage) can keep alive in the environment up 140 days. Once ingested by the flea larvae, sporozoites are released in the gut of flea larvae. Sporozoites then differentiate into trophozoites in the newly emerged fleas. Trophozoites are found attached firmly to gut of the flea by a cup-shaped epimerite with flattened bottom as support. A pair of trophozoites are then caudo-frontally associated, and then gametocysts are formed. Mature gametocysts release hundreds of oocyst into the gut of the flea as the starting point of the entire life cycle. Partial SSU rRNA gene of S. ctenocephali was amplified (approximately 1,778 bp) and analyzed for relationship whitin and among gregarines species. The S. ctenocephali appears to be closely related to Monocystis agilis Stein, Prismatospora evansi Ellis and Syncystis mirabilis Schneider but not in the same monophyly with Gregarina. Morphological and molecular data are in perfect agreement supporting the relocation of Gregarina ctenocephali Ross to the genus Steinina Lèger and Duboscq. Over three years study we found that S. ctenocephali was more prevalent in warm seasons than the cold one, female’s fleas were more attacked by gregarines, and fleas living on dogs are more prone to be infected with gregarines compared to those on cats. Gender and host preference were evident as female’s fleas were more vulnerable to be infected by gregarines, and fleas living on dogs invariably were found to be infected by more S. ctenocephali compared to cats. The artificial infection of S. ctenocephali on cat fleas indicated that this gregarine may not be an appropriate biocontrol agent. However, developmental time of flea was shortened when exposed to high dose of oocysts, which may represent an interesting, but previsouly undiscovered, case involving adaptative host-manipulation by S. ctenocephali.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:45:25Z (GMT). No. of bitstreams: 1
ntu-100-D93632005-1.pdf: 3169728 bytes, checksum: 83dbe4952d30a6ce4d76bc3a59309f19 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
Acknowledgements..........................................I
摘要......................................................V
Abstract................................................VII
Table of Contents.........................................X
List of Table...........................................XII
List of Illustrations..................................XIII
General Introduction......................................1
Fleas and symbionts.......................................1
Apicomplexans and gregarines..............................4
Literature review and outlines of the dissertation........8
Gregarines and fleas......................................8
Outlines of the dissertation.............................11
Chapter I The life cycle of Steinina ctenocephali (Ross) on cat flea.................................................13
1.1 Abstracts............................................14
1.2 Introduction.........................................14
1.3 Materials and methods................................17
1.4 Results..............................................18
1.5 Discussion...........................................22
1.5.1 Steinina ctenocephali comb. nov....................22
1.5.2 Gametocyst formation...........................24
1.6 Conclusion...........................................28
Chapter II Taxonomic position and phylogenetic affinities of Steinina ctenocephali (Ross)..........................36
2.1 Abstracts............................................37
2.2 Introduction.........................................37
2.3 Materials and methods................................39
2.3.1 Flea collection....................................39
2.3.2 DNA extraction, PCR amplification, cloning and sequencing...............................................40
2.3.3 Molecular phylogenetic analysis of S. ctenocephali SSU rRNA gene............................................41
2.4 Results..............................................42
2.4.1 Phylogenetic relationship of S. ctenocephali.......42
2.5 Discussion...........................................43
2.6 Conclusion...........................................45
Chapter III Factors influencing Steinina ctenocephali host preference and seasonality...............................49
3.1 Abstracts............................................50
3.2 Introduction.........................................51
3.3 Materials and methods................................53
3.3.1 Flea collection and data recording.................53
3.3.2 Data analysis......................................54
3.4 Results..............................................55
3.5 Discussion...........................................56
3.6 Conclusion...........................................60
Chapter IV Effect of Steinina ctenocephali (Ross) infection on cat flea..............................................69
4.1 Abstracts............................................70
4.2 Introduction.........................................71
4.3 Materials and methods................................72
4.3.1 Flea collection....................................72
4.3.2 Microcells and oocysts collection..................72
4.3.3. Oocysts manipulation..............................73
4.3.4 Flea infection and data recording..................74
4.3.5 Data analyses......................................74
4.4 Results..............................................75
4.5 Discussion...........................................76
4.6 Conclusion...........................................78
References...............................................83
APPENDIX.................................................93
Appendix A...............................................93
The M&M system developed to fit microcells and used in this investigation............................................93
dc.language.isoen
dc.title台灣貓蚤簇蟲感染貓蚤之生物學及其應用zh_TW
dc.titleSteinina ctenocephali (Ross) (Apicomplexa: Actinocephalidae) Infecting Cat Fleas, Ctenocephalides felis (Bouché) (Siphonaptera: Pulicidae) in Taiwan: Biology and Implicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor陳維鈞(Wei-June Chen)
dc.contributor.oralexamcommittee蕭旭峰,杜武俊,張念台,王重雄,徐爾烈
dc.subject.keywordSteinina ctenocephali,簇蟲,貓蚤,宿主與寄生蟲交互關係,生活史,新學名組合,zh_TW
dc.subject.keywordSteinina ctenocephali,gregarine,cat flea,host parasite interaction,life cycle,new combination,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved