請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡 | |
| dc.contributor.author | Yu-Hung Shih | en |
| dc.contributor.author | 施昱宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:45:12Z | - |
| dc.date.available | 2015-09-13 | |
| dc.date.copyright | 2010-09-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 1. D'Cruz DP, Khamashta MA, Hughes GR: Systemic lupus erythematosus, Lancet 2007, 369:587-596
2. 周昌德, 白瑞聰, 徐均宏, 王晴祺: 台灣紅斑性狼瘡之流行病學研究------以國衛院大型之資料分析. Edited by 宜蘭, 2009 3. Hochberg MC: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus, Arthritis Rheum 1997, 40:1725 4. Gladman DD, Ibanez D, Urowitz MB: Systemic lupus erythematosus disease activity index 2000, J Rheumatol 2002, 29:288-291 5. Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, Williams A, Beck S, Kyogoku C, Moser K, Gaffney P, Gregersen PK, Criswell LA, Harley JB, Behrens TW: Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE, Eur J Hum Genet 2007, 15:823-830 6. Dunckley H, Gatenby PA, Serjeantson SW: DNA typing of HLA-DR antigens in systemic lupus erythematosus, Immunogenetics 1986, 24:158-162 7. Sirikong M, Tsuchiya N, Chandanayingyong D, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Siriboonrit U, Tokunaga K: Association of HLA-DRB1*1502-DQB1*0501 haplotype with susceptibility to systemic lupus erythematosus in Thais, Tissue Antigens 2002, 59:113-117 8. Russell AI, Cunninghame Graham DS, Shepherd C, Roberton CA, Whittaker J, Meeks J, Powell RJ, Isenberg DA, Walport MJ, Vyse TJ: Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus, Hum Mol Genet 2004, 13:137-147 9. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans, Nat Genet 2002, 32:666-669 10. Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 1980, 284:555-556 11. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S: Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, Cell 2003, 113:717-730 12. Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, Rothe G, Schmitz G: Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients, J Lipid Res 2003, 44:754-761 13. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K: UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis, Nature 2007, 446:1091-1095 14. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature 2009, 461:282-286 15. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S: Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a 'come-and-get-me' signal, FASEB J 2008, 22:2629-2638 16. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD: CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis, Blood 2008, 112:5026-5036 17. Gregory CD, Devitt A: The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?, Immunology 2004, 113:1-14 18. Vandivier RW, Henson PM, Douglas IS: Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease, Chest 2006, 129:1673-1682 19. Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U, Parry G: cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences, Proc Natl Acad Sci U S A 1990, 87:8417-8421 20. Larocca D, Peterson JA, Urrea R, Kuniyoshi J, Bistrain AM, Ceriani RL: A Mr 46,000 human milk fat globule protein that is highly expressed in human breast tumors contains factor VIII-like domains, Cancer Res 1991, 51:4994-4998 21. Aoki N, Ujita M, Kuroda H, Urabe M, Noda A, Adachil T, Nakamura R, Matsuda T: Immunologically cross-reactive 57 kDa and 53 kDa glycoprotein antigens of bovine milk fat globule membrane: isoforms with different N-linked sugar chains and differential glycosylation at early stages of lactation, Biochim Biophys Acta 1994, 1200:227-234 22. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S: Identification of a factor that links apoptotic cells to phagocytes, Nature 2002, 417:182-187 23. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S: Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice, Science 2004, 304:1147-1150 24. Taylor MR, Couto JR, Scallan CD, Ceriani RL, Peterson JA: Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion, DNA Cell Biol 1997, 16:861-869 25. Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT: Functional analyses of two cellular binding domains of bovine lactadherin, Biochemistry 2000, 39:6200-6206 26. Andersen MH, Berglund L, Rasmussen JT, Petersen TE: Bovine PAS-6/7 binds alpha v beta 5 integrins and anionic phospholipids through two domains, Biochemistry 1997, 36:5441-5446 27. Yamaguchi H, Takagi J, Miyamae T, Yokota S, Fujimoto T, Nakamura S, Ohshima S, Naka T, Nagata S: Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus, J Leukoc Biol 2008, 83:1300-1307 28. Shao C, Novakovic VA, Head JF, Seaton BA, Gilbert GE: Crystal structure of lactadherin C2 domain at 1.7A resolution with mutational and computational analyses of its membrane-binding motif, J Biol Chem 2008, 283:7230-7241 29. Lin L, Huai Q, Huang M, Furie B, Furie BC: Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII, J Mol Biol 2007, 371:717-724 30. Shur BD, Ensslin MA, Rodeheffer C: SED1 function during mammalian sperm-egg adhesion, Curr Opin Cell Biol 2004, 16:477-485 31. Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D, Auerbach R, Hogan BL, Snodgrass R, Quertermous T: Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor, Genes Dev 1998, 12:21-33 32. Haggqvist B, Naslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engstrom U, Westermark P: Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid, Proc Natl Acad Sci U S A 1999, 96:8669-8674 33. Peng S, Larsson A, Wassberg E, Gerwins P, Thelin S, Fu X, Westermark P: Role of aggregated medin in the pathogenesis of thoracic aortic aneurysm and dissection, Lab Invest 2007, 87:1195-1205 34. Picariello G, Ferranti P, Mamone G, Roepstorff P, Addeo F: Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry, Proteomics 2008, 8:3833-3847 35. Yamaguchi H, Fujimoto T, Nakamura S, Ohmura K, Mimori T, Matsuda F, Nagata S: Aberrant splicing of the milk fat globule-EGF factor 8 (MFG-E8) gene in human systemic lupus erythematosus, Eur J Immunol 2010, 40:1778-1785 36. Leonardi-Essmann F, Emig M, Kitamura Y, Spanagel R, Gebicke-Haerter PJ: Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia, J Neuroimmunol 2005, 160:92-101 37. Hanayama R, Nagata S: Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8, Proc Natl Acad Sci U S A 2005, 102:16886-16891 38. Atabai K, Fernandez R, Huang X, Ueki I, Kline A, Li Y, Sadatmansoori S, Smith-Steinhart C, Zhu W, Pytela R, Werb Z, Sheppard D: Mfge8 is critical for mammary gland remodeling during involution, Mol Biol Cell 2005, 16:5528-5537 39. Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Leseche G, Boulanger C, Tedgui A, Mallat Z: Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice, Circulation 2007, 115:2168-2177 40. Boddaert J, Kinugawa K, Lambert JC, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J, Garabedian B, Journiac N, Charue D, Silvestre JS, Duyckaerts C, Amouyel P, Mariani J, Tedgui A, Mallat Z: Evidence of a role for lactadherin in Alzheimer's disease, Am J Pathol 2007, 170:921-929 41. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, Raymond AS, Shur BD, Tan XD: Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium, J Clin Invest 2007, 117:3673-3683 42. Ensslin MA, Shur BD: Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding, Cell 2003, 114:405-417 43. Silvestre JS, Thery C, Hamard G, Boddaert J, Aguilar B, Delcayre A, Houbron C, Tamarat R, Blanc-Brude O, Heeneman S, Clergue M, Duriez M, Merval R, Levy B, Tedgui A, Amigorena S, Mallat Z: Lactadherin promotes VEGF-dependent neovascularization, Nat Med 2005, 11:499-506 44. Jinushi M, Nakazaki Y, Carrasco DR, Draganov D, Souders N, Johnson M, Mihm MC, Dranoff G: Milk fat globule EGF-8 promotes melanoma progression through coordinated Akt and twist signaling in the tumor microenvironment, Cancer Res 2008, 68:8889-8898 45. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G: MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF, J Clin Invest 2007, 117:1902-1913 46. Aziz MM, Ishihara S, Mishima Y, Oshima N, Moriyama I, Yuki T, Kadowaki Y, Rumi MA, Amano Y, Kinoshita Y: MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling, J Immunol 2009, 182:7222-7232 47. Newburg DS, Peterson JA, Ruiz-Palacios GM, Matson DO, Morrow AL, Shults J, Guerrero ML, Chaturvedi P, Newburg SO, Scallan CD, Taylor MR, Ceriani RL, Pickering LK: Role of human-milk lactadherin in protection against symptomatic rotavirus infection, Lancet 1998, 351:1160-1164 48. Hu CY, Wu CS, Tsai HF, Chang SK, Tsai WI, Hsu PN: Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human, Lupus 2009, 18:676-681 49. Liu J, Prolla G, Rostagno A, Chiarle R, Feiner H, Inghirami G: Initiation of translation from a downstream in-frame AUG codon on BRCA1 can generate the novel isoform protein DeltaBRCA1(17aa), Oncogene 2000, 19:2767-2773 50. Concepcion GP, Padlan EA: The codon for the methionine at position 129 (M129) in the human prion protein provides an alternative initiation site for translation and renders individuals homozygous for M129 more susceptible to prion disease, Med Hypotheses 2005, 65:865-867 51. Schein CH: Production of Soluble Recombinant Proteins in Bacteria, Nature Biotechnology 1989, 7:1141-1149 52. Dumon-Seignovert L, Cariot G, Vuillard L: The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3), Protein Expr Purif 2004, 37:203-206 53. Miroux B, Walker JE: Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J Mol Biol 1996, 260:289-298 54. Kane JF: Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli, Curr Opin Biotechnol 1995, 6:494-500 55. Gregoriadis G, Jain S, Papaioannou I, Laing P: Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids, Int J Pharm 2005, 300:125-130 56. Chitlaru T, Kronman C, Zeevi M, Kam M, Harel A, Ordentlich A, Velan B, Shafferman A: Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels, Biochem J 1998, 336 ( Pt 3):647-658 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47010 | - |
| dc.description.abstract | 背景 (Background):乳脂肪小球表皮生長因子8 (milk-fat globule EGF factor 8, MFG-E8)最早是發現於泌乳時乳脂肪小球中的分泌型醣蛋白。其蛋白主要表現於乳腺細胞及免疫調節器官中的細胞,如:淋巴結或脾臟中的著色體巨噬細胞 (tingible-body MΦ)。蛋白結構帶有表皮生長因子相似功能區 (EGF-like domain)與第五及第八凝血因子相似功能區(FV/FVIII type C-like domain),可分別與吞噬細胞表面的integrin αvβ3/5及凋亡細胞面的磷脂絲胺酸 (phosphatidylserine, PS)結合。近期的研究指出,MFG-E8的功能主要是在吞噬細胞 (如:巨噬細胞macrophage及樹突細胞dendritic cell)清除凋亡細胞的過程中扮演架橋分子的角色。在MFG-E8基因剔除的小鼠模型中發現,吞噬細胞吞吃凋亡細胞的能力下降,凋亡細胞無法被有效的清除,並且在40週大的雌鼠體內觀察到肝脾腫大及腎絲球腎炎的現象,同時偵測到高量的自體抗體;這些症狀都與人類自體免疫疾病—全身性紅斑性狼瘡 (systemic lupus erythematosus, SLE)的特徵非常相似,顯示缺少MFG-E8造成的凋亡細胞清除缺失與SLE的致病原因可能有關聯性。我們先前研究比較SLE病患和健康對照組間MFG-E8基因單點核苷酸多型性 (single nucleotide polymorphism, SNP)的差異,結果發現MFG-E8第76位點變異型76Met與SLE的罹病有顯著正相關。該點及附近的核苷酸序列恰好符合真核細胞轉譯起始所需的序列consensus Kozac sequence (A/G-3NNATGG+4),對此我們提出一個假設—可能在76Met位點出現替代性轉譯 (alternative translation)的現象,並產生短片段的MFG-E8蛋白。
方法 (Methods):為了研究替代性轉譯是否有發生,本研究中 1. 選殖MFG-E8 cDNA並建立以大腸桿菌製備重組MFG-E8蛋白方法,供後續研究。2. 在轉染不同MFG-E8變異型的293T細胞及帶不同MFG-E8變異型的人類周邊血液單核球獲致的人類巨噬細胞中觀察MFG-E8-76Met變異型是否發生替代性轉譯。3. 偵測SLE病患血清中MFG-E8蛋白的表現量,了解MFG-E8第76位點基因型的變異與血清中MFG-E8蛋白量的變化是否有相關性。 結果 (Results):1. 完成MFG-E8基因選殖並成功在大腸桿菌中誘導蛋白表現,但但白表現量低,即使調整誘導條件蛋白產量仍過低,無法進行後續蛋白純化。2. 轉染MFG-E8 (Δ1-75)短片段序列之293T細胞中確實可表現MFG-E8 Δ1-75短片段蛋白,但其表現效率遠低於全長MFG-E8序列。3. 在MFG-E8變異型76Met轉染細胞中未明顯觀察到短片段MFG-E8蛋白。4. MFG-E8變異型為76Met的人類巨噬細胞中未觀察到短片段MFG-E8蛋白,不過發現偵測到的MFG-E8蛋白較預期分子量小,且MFG-E8表現量在不同MFG-E8-76變異型之巨噬細胞中無規律性。5. SLE病患血清中MFG-E8的表現量分布顯著高於健康對照組,但SLE病患血清中MFG-E8升高與MFG-E8第76位點變異型之間沒有顯著的相關性。 結論 (Conclusions):1. MFG-E8第76位點ATG密碼子並非有效的替代性轉譯起始位。2. 部份SLE病患血清中發現高於健康對照組之MFG-E8表現,但與MFG-E8第76位點變異型無顯著相關。3. 巨噬細胞中MFG-E8表現量與MFG-E8-76變異型無相關性,但偵得分子量低於預期,暗示可能由於巨噬細胞中特有的處理方式所造成。MFG-E8再吞噬細胞中的處理及表現情形有待進一步的探討。 | zh_TW |
| dc.description.abstract | Background: Milk-fat globule EGF factor 8 (MFG-E8) is a secreted glycoprotein found in milk-fat globule derived from lactating mammary. MFG-E8 proteins express mainly in the mammary cells and immuno-modulating cells such as tingible-body macrophages in spleen and lymph node. MFG-E8 contains EGF domains (Epidermal growth factor-like) and C1/C2 domains (Coagulation factor V and VIII type C-like) for integrin αvβ3/5 on (MΦ) binding and phosphatidylserine (PS)(on apoptotic cell) recognition, respectively. The importance of MFG-E8 function as a bridging molecule during apoptotic cell clearance has been emphasized in recent years. Decreased phagocytic clearance and accumulation of apoptotic cells was noted in MFG-E8-deficient mice. Intriguingly, the 40-week-old female MFG-E8-deficient mice present higher titer of autoantibodies and suffered splenomegaly/glomerulonephritis more prevalently than the male mice, which were characterized in human systemic lupus erythematosus (SLE). These results indicate the correlation between MFG-E8 deficiency-related apoptotic cell clearance defect and SLE pathogenesis. Our previous studies revealed that the variant on MFG-E8-76th residue (76Met) was a predisposing factor for human SLE. Interestingly, a concensus Kozac sequence (A/G-3NNATGG+4) resides around residue 76Met, which may potentially act as an alternative translation initiation site and subsequently produce short form MFG-E8-Δ1-75 in cells of MFG-E8-76Met variant type.
Methods: Several approaches were applied to test the hypothesis whether there is alternative translation - 1. Molecular cloning of MFG-E8 cDNA and express recombinant MFG-E8 protein in E. coli. 2. Examine whether MFG-E8-76Met variant form perform alternative translation in different MFG-E8-76 variant forms-transfected 293T cell lines and PBMC-derived human macrophages with different MFG-E8-76 variant forms. 3. Detect serum MFG-E8 expression level in SLE cohort to realize the correlation between MFG-E8-76 variations and serum MFG-E8 level. Results: 1. MFG-E8 cDNA was successfully cloned and then expressed in E. coli. However, the protein expression levels are considered low even after optimizing the protein induction conditions. Further protein expression was hampered due to low expression level. 2. Short form MFG-E8 protein was produced in MFG-E8 (Δ1-75)-transfected 293T cell lines but the expression efficiency were considerably lower than that found in 293T cell transfected with full length MFG-E8. 3. No short form MFG-E8 protein was observed in MFG-E8-76Met-transfected 293T cell lines. 4. No short form MFG-E8 protein were observed in peripheral blood monocytic cells-derived macrophage of MFG-E8-76Met variant form. Interestingly, the MFG-E8 detected in human macrophage was of smaller size than the expected. The protein expression level differed independently of MFG-E8-76 variant forms. 5. Serum MFG-E8 expression levels in SLE cohort were significantly higher than that of non-lupus controls but the elevated MFG-E8 level did not show significant correlation with MFG-E8-76 variant forms. Conclusions: 1. MFG-E8-76th codon ATG does not show to be an appropriate alternative translational start site. 2. Serum MFG-E8 levels were higher in part of SLE patients than in healthy controls but the elevated MFG-E8 level did not correlation with the MFG-E8-76 variant forms. 3. MFG-E8 expression levels had no correlation with the MFG-E8-76 variant forms in human macrophage. The proteins determined in human macrophage were smaller than estimated size suggested that there have distinct processes in human macrophage. The differential processing and expression of MFG-E8 in the phagocytes await further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:45:12Z (GMT). No. of bitstreams: 1 ntu-99-R97424019-1.pdf: 15632576 bytes, checksum: 7a705934ab93ff0952c1b5aaf68c3bcb (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
頁次 中文摘要............................................................................................................................I 英文摘要.........................................................................................................................III 縮寫表............................................................................................................................XII 第一章 緒論...................................................................................................................1 第一節 全身性紅斑性狼瘡 (Systemic Lupus Erythematosus, SLE)..................1 1.1、全身性紅斑性狼瘡簡介..........................................................................1 1.2、症狀及診斷..............................................................................................1 1.3、致病機轉..................................................................................................2 第二節 凋亡細胞清除作用 (Apoptotic Cell Clearance/Efferocytosis) .............3 2.1、細胞凋亡簡介.........................................................................................3 2.2、凋亡細胞清除作用簡介.........................................................................3 2.3、Efferocytosis............................................................................................5 第三節 乳脂肪小球表皮生長因子8 (Milk-fat globule EGF factor 8, MFG-E8) ................................................................................................5 3.1、MFG-E8簡介..........................................................................................5 3.2、MFG-E8之表現與基因及蛋白結構......................................................6 3.3、MFG-E8功能及特性..............................................................................9 3.4、MFG-E8與凋亡細胞清除作用及全身性紅斑性狼瘡文獻探討..........13 第四節 替代性轉譯 (Alternative translation) ...................................................15 4.1、Alternative translation簡介....................................................................15 4.2、文獻探討................................................................................................15 第二章 研究目的與實驗設計.....................................................................................16 第三章 材料與方法.....................................................................................................18 第一節 實驗材料 .................................................................................................18 1.1、試藥及材料清單.....................................................................................18 1.2、溶液配方.................................................................................................18 1.2.1去氧核醣核酸萃取 (DNA extraction)..........................................18 1.2.2質體構築及基因選殖 (plasmid construction & cloning)............19 1.2.3細胞蛋白質萃取...........................................................................20 1.2.4鈉十二烷基硫酸鹽聚丙烯酰胺凝膠電泳法 (SDS-PAGE)........21 1.2.5西方墨點法 (Western blotting)....................................................23 1.2.6酵素連結免疫吸附分析 (ELISA)...............................................24 1.2.7勝任細胞製備 (competent cell preparation)................................25 第二節 實驗方法................................................................................................25 2.1、檢體收集...............................................................................................25 2.2、MFG-E8基因型分析—MFG-E8+226 C/A.........................................26 2.2.1去氧核醣核酸萃取 (DNA extraction).........................................26 2.2.2限制片段長度多型性 (RFLP).....................................................26 2.3、MFG-E8表現於大腸桿菌....................................................................26 2.3.1人類MFG-E8基因選殖:質體備製...........................................26 2.3.2 MFG-E8蛋白表現........................................................................27 2.3.3 MFG-E8蛋白萃取........................................................................28 2.3.4膠體配製及鈉十二烷基硫酸鹽聚丙烯酰胺凝膠電泳法 (SDS-PAGE) ...............................................................................28 2.3.5 MFG-E8西方墨點法 (Western blotting)....................................29 2.3.5-1膠體轉漬 (Transfer)及阻斷非特異性結合反 (Blocking)..........................................................................29 2.3.5-2免疫染色 (Immunostaining).............................................29 2.3.6 MFG-E8蛋白質染色 (Coomassie brilliant blue staining)..........30 2.4、MFG-E8表現於真核細胞293T與人類巨噬細胞內MFG-E8表現形 態............................................................................................................30 2.4.1真核細胞表現之質體製備...........................................................30 2.4.2分離周邊血液單核球 (peripheral blood mononuclear cell, PBMC)及人類巨噬細胞培養......................................................31 2.4.3 293T細胞培養..............................................................................31 2.4.4 MFG-E8基因轉染 (Transfection) ..............................................31 2.4.5 MFG-E8蛋白萃取........................................................................32 2.4.5-1細胞內蛋白部份................................................................32 2.4.5-2細胞培養液部份 (分泌型蛋白) ......................................32 2.4.6 MFG-E8蛋白定量........................................................................33 2.4.7膠體配製及鈉十二烷基硫酸鹽聚丙烯酰胺凝膠電泳法 (SDS-PAGE) ................................................................................33 2.4.8 MFG-E8西方墨點法 (Western blotting).....................................33 2.4.8-1膠體轉漬 (Transfer)及阻斷非特異性結合反應 (Blocking) ..........................................................................33 2.4.8-2免疫染色 (Immunostaining) .............................................33 2.4.9 MFG-E8蛋白質染色 (Coomassie brilliant blue staining)...........34 2.4.10脫除反應 (Stripping) .................................................................34 2.4.11 α-tubulin蛋白免疫染色法—Internal control.............................34 2.5、酵素連結免疫吸附分析 (Enzyme-linked Immunosorbent Assay, ELISA) .................................................................................................35 2.6、定點突變 (Site-directed Mutagenesis) ................................................36 2.7、TA選殖 (TA cloning) .........................................................................36 第四章 實驗結果........................................................................................................37 第一節 MFG-E8表現於大腸桿菌.....................................................................37 1.1、於大腸桿菌BL21(DE3)pLysS中表現MFG-E8.................................37 1.2、MFG-E8以不同時間長度 (time course)誘導表現於大腸桿菌 BL21(DE3)pLysS,蛋白表現量無顯著增加......................................37 1.3、MFG-E8於不同溫度下誘導表現於大腸桿菌BL21(DE3)pLysS,蛋 白表現量無顯著增加...........................................................................38 1.4、MFG-E8誘導表現於大腸桿菌C41及C43,蛋白表現量無顯著增 加...........................................................................................................39 1.5、MFG-E8誘導於大腸桿菌Rosetta(DE3)pLysS之蛋白表現量大於 BL21(DE3)pLysS..................................................................................39 1.6、MFG-E8誘導於大腸桿菌Rosetta2(DE3)pLysS的蛋白表現量高於 BL21(DE3)pLysS..................................................................................40 1.7、MFG-E8誘導於大腸桿菌Rosetta2(DE3)pLysS的蛋白表現量高於 BL21(DE3)pLysS,且主要以包涵體 (inclusion body)的形式表現 ..............................................................................................................41 第二節 MFG-E8表現於真核細胞293T細胞株..............................................42 2.1、MFG-E8可表現於真核細胞293T細胞株.........................................42 2.2、分泌型MFG-E8可表現於真核細胞293T細胞株............................43 第三節 第76位點變異型之MFG-E8蛋白表現形態.....................................44 3.1、pIRES2-EGFP-MFG-E8-Δ1-75轉染293T細胞後之蛋白表現型態 並評估轉染率.......................................................................................44 3.2、pIRES2-EGFP-MFG-E8 (Δ1-75, 76Met, 76Leu)轉染293T細胞之蛋白 表現型態...............................................................................................44 3.3、以蛋白酶體抑制劑 (Proteasome inhibitor)MG-132作用之293T細 胞,pIRES2-EGFP-MFG-E8-Δ1-75及76Met蛋白表現沒有顯著增 加..........................................................................................................46 3.4、第76位點不同基因型 (MFG-E8 +226 CorA)之人類巨噬細胞中 MFG-E8蛋白表現情形,C/C基因型較A/A基因型表現量多.......47 第四節 全身性紅斑性狼瘡病患血清之MFG-E8與MFG-E8第76位點變異 型無顯著相關性....................................................................................48 第五章 討論................................................................................................................50 第六章 總結與未來展望........................................................................................... 56 參考文獻........................................................................................................................57 圖與表............................................................................................................................63 附錄................................................................................................................................87 圖目錄 圖一、pRSET-A-MFG-E8 (76Met, 76Leu)及pET-28a-MFG-E8 (76Met, 76Leu) 質體構築 圖.........................................................................................................................64 圖二、pIRES2-EGFP-MFG-E8 (Δ1-75, 76Met, 76Leu)質體構築圖................................65 圖三、pIRES2-EGFP-MFG-E8-HIS質體構築圖.........................................................66 圖四、MFG-E8於大腸桿菌中密碼子使用情形..........................................................67 圖五、於大腸桿菌BL21(DE3)pLysS中表現MFG-E8...............................................68 圖六、於大腸桿菌BL21(DE3)pLysS中表現MFG-E8...............................................69 圖七、於大腸桿菌BL21(DE3)pLysS中,低溫環境下表現MFG-E8.......................70 圖八、於大腸桿菌C41及C43中表現MFG-E8.........................................................71 圖九、於大腸桿菌BL21(DE3)pLysS及Rosetta(DE3)pLysS表現MFG-E8.............72 圖十、於大腸桿菌BL21(DE3)pLysS及Rosetta2(DE3)pLysS表現MFG-E8...........73 圖十一、於大腸桿菌BL21(DE3)pLysS及Rosetta2(DE3)pLysS表現MFG-E8.......74 圖十二、於真核細胞293T細胞株表現MFG-E8—細胞內蛋白部份........................75 圖十三、於真核細胞293T細胞株表現MFG-E8—細胞培養液部分 (分泌型蛋白) .........................................................................................................................76 圖十四、pIRES2-EGFP-MFG-E8Δ1-75轉染293T細胞之螢光表現............................77 圖十五、pIRES2-EGFP-MFG-E8 (Δ1-75, 76Met, 76Leu)轉染293T細胞之蛋白表現 .........................................................................................................................78 圖十六、pIRES2-EGFP-MFG-E8 (Δ1-75, 76Met, 76Leu)轉染293T細胞之蛋白表現 .........................................................................................................................79 圖十七、以蛋白酶體抑制劑MG-132作用293T細胞,pIRES2-EGFP-MFG-E8 Δ1-75, 76Met)之蛋白表現...............................................................................80 圖十八、人類巨噬細胞中第76位點不同基因型之MFG-E8蛋白表現情形..........81 圖十九、酵素連結免疫吸附分析定量血清MFG-E8之檢量線................................82 圖二十、酵素連結免疫吸附分析定量血清MFG-E8.................................................83 表目錄 表ㄧ、酵素連結免疫吸附分析定量血清MFG-E8表現量.........................................84 表二、血清MFG-E8表現量與MFG-E8 +226基因型分析.......................................85 表三、血清MFG-E8表現量與MFG-E8 +226對偶基因型攜帶分析.......................86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乳脂肪小球表皮生長因子 8 (MFG-E8) | zh_TW |
| dc.subject | 全身性紅斑性狼瘡 (SLE) | zh_TW |
| dc.subject | 替代性轉譯 (alternative tranlation) | zh_TW |
| dc.subject | alternative translation | en |
| dc.subject | milk-fat globule EGF factor 8 (MFG-E8) | en |
| dc.subject | systemic lupus erythematosus (SLE) | en |
| dc.title | 乳脂肪小球表皮生長因子8 (MFG-E8)變異型之基因選殖、蛋白表現及分析 | zh_TW |
| dc.title | Molecular cloning, protein expression and characterization of milk-fat globule EGF factor 8 (MFG-E8) variant forms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑萍,張淑媛 | |
| dc.subject.keyword | 全身性紅斑性狼瘡 (SLE),乳脂肪小球表皮生長因子 8 (MFG-E8),替代性轉譯 (alternative tranlation), | zh_TW |
| dc.subject.keyword | systemic lupus erythematosus (SLE),milk-fat globule EGF factor 8 (MFG-E8),alternative translation, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 15.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
