Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷(Yi-Yin Do)
dc.contributor.authorYi-Shan Hsiehen
dc.contributor.author謝宜珊zh_TW
dc.date.accessioned2021-05-14T17:45:29Z-
dc.date.available2020-10-12
dc.date.available2021-05-14T17:45:29Z-
dc.date.copyright2015-10-12
dc.date.issued2015
dc.date.submitted2015-07-13
dc.identifier.citation王婉伶、蔡智賢、岳慶熙、陳瑞祥、蔡竹固. 2007. 利用 rDNA ITS、RAPD及ISSR分子標誌評估安石榴之遺傳歧異度. 臺灣園藝 53:157-172.
伏建國、劉金良、楊曉軍、安榆林、駱嘉言. 2013. 分子生物學技術應用於木材識別的研究發展. 浙江農林大學學報 30:438-443.
周延清. 2005. DNA分子標記技術在植物研究中的應用. 化學工業出版社. 北京. 中國.
林玉如、陳淑華. 2007. 台灣檜木. 宜蘭縣立蘭陽博物館. 宜蘭. 臺灣.
林彥良、王升陽、曲芳華. 2008a. 紅檜caffeoyl-CoA 3-O-methyltransferase基因之選殖及其轉基因菸草木質素分析. 中華林學季刊 41:323-338.
林彥良、王升陽、曲芳華. 2008b. 紅檜、台灣扁柏、台灣冷杉、台灣鐵杉和台灣杉caffeoyl CoA 3-O-methyltransferase基因之選殖與序列分析. 林業研究季刊 30:13-24.
胡智益. 2013. 茶樹品種分子鑑定技術之開發及遺傳圖譜之建構. 國立臺灣大學生物資源暨農學院農藝學系博士論文.
陳盈如、林群雅、鄭森松、張上鎮. 2012. 精油裡的秘密-鑑定扁柏屬植物之親緣關係. 臺灣林業 38:26-33.
陳榮坤、蔡孟勳、陳凱儀. 2013. 臺灣型水稻品種隨機型SNP分子標誌資料庫的建構. 臺南區農業改良場研究彙報 61:15-28.
黃啟俊、林其永、王國雄、許再文、蔣鎮宇. 2007. 玉山國家公園境內紅檜之微衛星DNA研究. 國家公園學報 17:17-32.
黃麗虹、黃士穎、林讚標. 2000. 紅檜與台灣扁柏的葉綠體DNA遺傳變異及族群分化. 臺灣林業科學 15:229-23.
溫英杰、許財誠. 2003. 利用RAPD技術分析桃種原親緣關係. 中華農業研究 52:144-152.
劉邦基、張有明、許華欣. 1998. 生物技術在蔬菜育種上之應用. 臺灣省農試所特刊 73:133-144.
Aga, E., E. Bekele, and T. Bryngelsson. 2005. Inter-simple sequence repeat (ISSR) variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia. Genetica 124:213-221.
Austerlitz, F., S. Mariette, N. Machon, P.H. Gouyon, and B. Godelle. 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309-1321.
Boerjan W., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519-546.
Cano, R.J. 1996. Analysing ancient DNA. Endeavour 20:162-167.
Chappell, J. 1995. The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol. 107:1-6.
Chu, F.H., P.M. Kuo, Y.R. Chen, and S.Y. Wandg. 2009. Cloning and characterization of α-pinene synthase from Chamaecyparis formosensis Matsum. Holzforschung 63:69-74.
Degen, B., S.E. Ward, M.R. Lemes, C. Navarro, S. Cavers, and A.M. Sebbenn. 2013. Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Sci. Intl. Genet. 7:55-62.
Dellaporta, S.L., J. Wood, and J.B. Hicks. 1983. A plant DNA minipreparation: verion II. Plant Mol. Biol. Rep. 1:19-21.
Deguilloux, M.F., M.H.l.n. Pemonge, and R.m.J. Petit. 2004. DNA-based control of oak wood geographic origin in the context of the cooperage industry. Ann. Forest Sci. 61:97-104.
Esteras, C., G. Formisano, C. Roig, A. Díaz, J. Blanca, J. Garcia-Mas, M.L. Gómez-Guillamón, A.I. López-Sesé, A. Lázaro, A.J. Monforte, and B. Picó. 2013. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor. Appl. Genet. 126:1285-1303.
Ferrer, J.L., C. Zubieta, R.A. Dixon, and J.P. Noel. 2005. Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol. 137:1009-1017.
Finkeldey, R., L. Leinemann, and O. Gailing. 2010. Molecular genetic tools to infer the origin of forest plants and wood. Appl. Microbiol. Biotechnol. 85:1251-1258.
Forest Products Laboratory. 1999. Wood handbook: wood as an engineering material. USDA general technical report FPL-GTR-113. U.S. Department of Agriculture Forest Service, Madison.
Garriga, M., P.A. Parra, P.D.S. Caligari, J.B. Retamales, B.A. Carrasce, G.A. Lobos, and R. García-Gonzáles. 2013. Application of inter-simple sequence repeats relative to simple sequence repeats as a molecular marker system for indexing blueberry cultivars. Can. J. Plant Sci. 93:913-921.
Germano, J. and A.S. Klein. 1999. Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens. Theor. Appl. Genet. 29:109-111.
Harakava, R. 2005. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet. Mol. Biol. 28:601-607.
Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913.
Hwang, S.Y, H.W. Lin, Y.S. Kuo, and T.P. Lin. 2001. RAPD variation in relation to population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis. Botanical Bulletin Academia Sinica 42:173-179.
Ibdah, M., X.H. Zhang, J. Schmidt, and T. Vogt. 2003. A novel Mg (2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 278:43961-43972.
Jeffreys, A.J., V. Wilson, and S.L. Thein. 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67-73.
Kumar, L.S. 1999. DNA markers in plant improvement: an overview. Biotechnol. Adv. 17:143-182.
Kuo, P.M., K.H. Hsu, Y.R. Lee, F.H. Chu, and S.Y. Wang. 2012. Isolation and characterization of β-cadinene synthase cDNA from Chamaecyparis formosensis Matsum. Holzforschung 66:569-576.
Lacombe, T., J.M. Boursiquot, V. Laucou, M.D. Vecchi-Staraz, J.P. Péros, and P. This. 2013. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 126:401-414.
Lee, H.T., S.L. Lee, K.K.S. Ng, S. Bhassu, and R.Y. Othman. 2012. DNA extraction from dry wood of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling and timber tracking. Wood Sci. Techno. 46:813-825.
Lin, T.P., T.Y. Lee, L.F. Yang, Y.L. Chung, and J.C. Yang. 1994. Comparison of the allozyme diversity in several populations of Chamaecyparis formosensis and Chamaecyparis taiwanensis. Can. J. For. Res. 24:2128-2134.
Liu, L., Z.Z. Hao, Y.Y. Liu, X.X. Wei, Y.Z. Cun, and X.Q. Wang. 2014. Phylogeography of Pinus armandii and its relatives: heterogeneous contributions of geography and climate changes to the genetic differentiation and diversification of Chinese white pines. PLoS One 9:e85920.
Liu, T. 1966. Study on the phytogeography of the conifers and taxads of Taiwan. Bull. Taiwan For. Res. Inst. 122:1-33.
Mahar, K.S., T.S. Rana, S.A. Ranade, V. Pande, and L.M.S. Palni. 2012. Estimation of genetic variability and population structure in Sapindus trifoliatus L., using DNA fingerprinting methods. Trees 27:85-96.
Matsumoto, A., K. Uchida, Y. Taguchi, N. Tani, and Y. Tsumura. 2010. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. J. Plant Res. 123:289-299.
Matsumoto, A., N. Tani, X.G. Li, Y. Nakao, N. Tomaru and Y. Tsumura. 2006. Development and polymorphisms of microsatellite markers for hinoki (Chamaecyparis obtusa). Mol. Ecol. Notes 6:310-312.
Moodie, M., R.P. Finch, and G. Marshall. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci. 45:102-107.
Nakao, Y., H. Iwata, A. Matsumoto, Y. Tsumura, and N. Tomaru. 2001. Highly polymorphic microsatellite markers in Chamaecyparis obtuse. Can. J. Forest Res. 31:2248-2251.
Ogden, R., H.N. Mcgough, R.S. Cowan, L.L. Chua, M. Groves, and R. Mcewing. 2008. SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products: applied research meeting CITES enforcement needs. Endamger. Species Res. 9:255-261.
Paiva, J.A.P., E. Prat, S. Vautrin, M.D. Santos, H.S. Clemente, S. Brommonschenkel, P.G.S. Fonseca, D. Frattapaglia, X. Song, J.S.S. Ammiraju, D. Kudrna, R.A. Wing, A.T. Freitas, H. Bergés, and J.G. Pettenati. 2011. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genom. 12:137-149.
Park, J.W., N.S. Gracia, C. Trevino, and J.A. da Silva. 2011. Exploitation of conserved intron scanning as a tool for molecular marker development in the Saccharum complex. Mol. Breed. 30:987-999.
Parker, P.G., A.A. Snow, M.D. Schug, G.C. Booton, and P.A. Fuerst. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79:361-382.
Poke, F.S., R.E. Vaillancourt, R.C. Elliott, and J.B. Reid. 2003. Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2). Mol. Breed. 12:107-118.
Spooner, D., R. van Treuren, and M.C. de Vicente. 2005. Molecular marker for genebank management. IPGRI Technical Bulletin No. 10. International Plant Genetic Resources Institute, Rome, Italy.
Sukganah, A., C.Y. Choong, J. Russell, D. Neale, and R. Wickneswari. 2013. Nucleotide sequence analysis of two lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality. Tree Genet. Genom. 9:1369-1381.
Tsumura, Y., T. Kado, K. Yoshida, H. Abe, M. Ohtani, Y. Taguchi, Y. Fukue, N. Tani, S. Ueno, K. Yoshimura, K. Kamiya, K. Harada, Y. Takeuchi, B. Diway, R. Finkeldey, M. Náiem, S. Indrioko, K.K. Ng, N. Muhammad, and S.L. Lee. 2011. Molecular database for classifying Shorea species (Dipterocarpaceae) and techniques for checking the legitimacy of timber and wood products. J. Plant Res. 124:35-48.
Vieira, E.S.N., É.V.R. Von Pinho, M.G.G. Carvalho, D.G. Esselink, and B. Vosman. 2010. Development of microsatellite markers for identifying Brazilian Coffea arabica varieties. Genet. Mol. Biol. 33:507-514.
Wang, H.Z., S.G. Feng, J.J. Lu, N.N. Shi, and J.J. Liu. 2009. Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Sci. Hortic. 122:440-447.
Zhong, R., W.H.M. III, D.S. Himmelsbach, F.L.P. II, and Z.-H. Ye. 2000. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124:563-577.
Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176-183.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4699-
dc.description.abstract臺灣檜木包含臺灣扁柏 (Chamaecyparis obtusa Sieb. Zucc. var. formosana (Hayata) Rehder) 與紅檜 (C. formosensis Matsum.) 兩種。本論文為了輔助鑑別臺灣檜木物種,透過基因序列分析,找出序列之多型性,單一核苷酸多型性 (single nucleotide polymorphism; SNP)、片段插入及缺失 (insertion-deletion; indel),開發為分子標誌。選殖臺灣檜木 caffeoyl CoA O-methyltransferase (CCoAOMT) 基因、alpha-pinene synthase (APS) 基因、cadinene synthase (CAS) 基因並進行序列分析,三個基因分別具有5、10、10個顯子。臺灣扁柏及紅檜之 CCoAOMT 基因於Intron 1、2及3具有Indel;CAS基因於Intron 1及5 存在 Indel;而在 APS 基因中僅有 SNP 差異。依據 CCoAOMT 基因序列設計引子進行聚合酶連鎖反應 (polymerase chain reaction; PCR),除了共同條帶,可合成紅檜特有片段約1.4 kb。針對 CAS 基因 Intron 1之Indel設計的引子,可得兩條紅檜特有PCR產物分別為750及800 bp;另得到紅檜及臺灣扁柏共同條帶為650 bp。若經毛細管電泳分析,臺灣扁柏樣品尚出現另一相近條帶,但紅檜則沒有。將650 bp序列分析後,臺灣扁柏樣品合成之產物比紅檜多 2 bp 片段插入序列,可用以鑑別臺灣扁柏。另根據CAS基因 Intron 5之 Indel 設計的引子,於紅檜及臺灣扁柏均可合成約700 bp片段,序列分析結果指出,11 bp 片段缺失之序列為紅檜特有序列。以上三組引子可應用於臺灣扁柏及紅檜分子標誌鑑定用。zh_TW
dc.description.abstractChamaecyparis obtusa Sieb. Zucc. var. formosana (Hayata) Rehder and C. formosensis Matsum. are known as Taiwan yellow and red cypress, respectively. To develop molecular markers to identify cypress, polymorphic gene sequences such as single nucleotide polymorphism (SNP) and insertion-deletion (Indel) were used as molecular markers to identify the species of timber and wood products. Caffeoyl CoA O-methyltransferase (CCoAOMT), alpha-pinene synthase (APS) and cadinene synthase (CAS) genes were cloned from both Taiwan yellow and red cypress and sequenced. Gene structure analysis revealed that there are 5, 10, 10 exons in CCoAOMT, APS, CAS, respectively. Indels were found in intron 1, 2 and 3 of CCoAOMT and intron 1 and 5 of CAS but only SNPs were found in APS. Specific primers have been designed based on the polymorphic DNA sequences in CCoAOMT, 1.4 kb fragment was synthesized only in red cypress with other common fragments. Two molecular markers based on the CAS indels sequence in intron 1 and 5 have been developed. For the marker based on intron 1 can identify cypress species through electrophoresis, in red cypress two specific bands about 750 and 800 bp were found together with the common 650 bp fragment in both cypresses. One extra fragment was separated away from the 650 bp common fragment by capillary electrophoresis, using DNA extracted from yellow cypress. After sequencing, the yellow cypress could be distinguished with red cypress by 650 bp PCR product by 2 bp insertion. Using primers designed based on intron 5 of CAS, 700 bp fragmemt was synthesized in both red cypress and yellow cypress but with 11bp deletion in red cypress.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:45:29Z (GMT). No. of bitstreams: 1
ntu-104-R01628112-1.pdf: 8866274 bytes, checksum: 90c705c2061657b98dc1568a781edc7e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要................................................i
Abstract...........................................ii
壹、前 言............................................1
貳、前 人 研 究......................................2
一、以DNA分子標誌分析遺傳歧異度........................2
二、木本植物之遺傳歧異性分析...........................3
三、以遺傳標誌鑑別木本植物之生育地......................4
四、臺灣檜木基因之釣取.................................5
五、木質素及萜類化合物之生合成途徑......................5
六、二級代謝物生合成相關基因序列多型性...................6
參、材 料 方 法.......................................8
一、試驗材料..........................................8
二、樣品前處理........................................8
三、木材DNA抽取.......................................8
四、葉片DNA抽取.......................................9
五、臺灣檜木基因之選殖.................................9
(一) 引子設計.........................................9
(二) 聚合酶連鎖反應 (polymerase chain reaction; PCR)..10
(三) 膠體內DNA之回收與接合反應.........................10
(四) 質體DNA之轉型....................................10
(五) 質體DNA小量製備..................................10
(六)、質體DNA定序 ....................................11
六、分子標誌開發......................................11
(一)、引子設計.......................................11
(二)、聚合酶連鎖反應 (polymerase chain reaction; PCR)..11
(三)、DNA定量與定序....................................12
肆、結 果.............................................13
一、不同部位及木材深度之臺灣檜木DNA抽取量變化.............13
二、臺灣檜木基因之選殖..................................13
(一)、Caffeoyl CoA O-methyltransferase基因結構與序列多型性分析....................................................13
(二)、Alpha-pinene synthase基因結構與序列多型性分析 ......14
(三)、Cadinene synthase基因結構與序列多型性分析..........14
三、臺灣檜木分子標誌之開發...............................15
(一)、Caffeoyl CoA O-methyltransferase基因之分子標誌分析.15
(二)、Cadinene synthase基因之分子標誌分析................15
伍、討 論..............................................61
一、不同部位及木材深度之臺灣檜木DNA抽取量變化..............61
二、臺灣檜木之基因序列分析...............................61
三、臺灣檜木之分子標誌分析...............................62
陸、結 ................................................66
柒、參 考 文 獻.........................................67
dc.language.isozh-TW
dc.subject物種鑑定zh_TW
dc.subject單一核?酸多型性zh_TW
dc.subject片段插入及缺失zh_TW
dc.subject杜松烯生合成基因zh_TW
dc.subjectinsertion and deletionen
dc.subjectspecies identificationen
dc.subjectsingle nucleotide polymorphismsen
dc.subjectcadinene synthase geneen
dc.title以基因序列多型性作為臺灣檜木之分子標誌zh_TW
dc.titleNucleotide Polymorphisms in Specific Genes as Molecular Markers for Taiwan Cypressen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor黃鵬林(Pung-Ling Huang)
dc.contributor.oralexamcommittee廖芳心(Fang-Shin Liao),徐善德(Shan-Te Hsu)
dc.subject.keyword物種鑑定,單一核?酸多型性,片段插入及缺失,杜松烯生合成基因,zh_TW
dc.subject.keywordspecies identification,single nucleotide polymorphisms,insertion and deletion,cadinene synthase gene,en
dc.relation.page71
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf8.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved