請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46992
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東 | |
dc.contributor.author | Yi-Chang Chen | en |
dc.contributor.author | 陳奕璋 | zh_TW |
dc.date.accessioned | 2021-06-15T05:44:48Z | - |
dc.date.available | 2010-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-19 | |
dc.identifier.citation | [1] A. G. M. Mitchell, “The limits of economy of material in framed structures,” Phil. Mag., series 6, 8, pp.589-597, 1904.
[2] L. A. Schmit, “Structural design by systematic synthesis,” Proceedings of the 2nd Conference on Electronic Computation, New York, American Society of Civil Engineering, pp.105-122, 1960. [3] L. A. Schmit, and B. Farshi, “Some approximation concepts for structural synthesis,” AIAA Journal, Vol.12, No.5, pp.692-699, 1974. [4] A. K. Noor, and H. E. Lowder, “Structural reanalysis via a mix method,” Computers and Structures, Vol.5, pp.9-12, 1975. [5] O. O. Storaasli, and J. Sobieszczanski-Sobieski, “On the accuracy of the Taylor approximation for structure resizing,” AIAA Journal, Vol.12, pp.231-233, 1974. [6] R. T. Haftka, and C. P. Shore, “Approximation method for combined thermal structural design,” NASA TP-1428, 1979. [7] J. H. Starnes, and R. T. Haftka, “Preliminary design of composite wings for buckling, strength, and displacement constraints,” Journal of Aircraft, Vol.16, No.8, pp.564-570, 1979. [8] C. Fleury, and V. Brabaint, “Structural optimization : a new dual method using mixed variables,” Int. Num. Meth. Engrg., 23, pp.409-428, 1986. [9] A. S. L. Chan, and E. Turlea, “An approximation method for structural optimization,” Computers and Structures, Vol.8, pp.357-363, 1978. [10] K. Svanberg, “The method of moving asymptotes-a new method for structural optimization,” Int. J. Num. Meth. Engrg., 24, pp.359-373, 1987. [11] R. T. Haftka, J. A. Nachlas, L. T. Watson, T. Rizzo, and R. Desai, “Two-point constraint approximation in structural optimization,” Computer methods in applied mechanics and engineering, Vol.60, pp.289-301, 1987. [12] G. M. Fadel, M. F. Riley, and J. M. Barthelemy, “Two-point exponential approximation method for structural optimization,” Structural Optimization, Vol.2, pp.117-124, 1990. [13] A. D. Belegundu, S. D. Rajan, and J. Rajgopal, “Exponential approximations in optimal design,” NASA CP 3064, pp.137-150, 1990. [14] 邱求慧, 凸線性近似概念在結構外形最佳設計之應用, 台大機械工程學研究所碩士論文, 1990. [15] L. P. Wang, and R. V. Grandhi, “Efficient safety index calculation for structural reliability analysis,” Computers and Structures, Vol.52, No.1, pp.103-111, 1994. [16] L. P. Wang, and R. V. Grandhi, “Improved two-point function approximations for design optimization,” AIAA Journal, Vol.33, No.9, September 1995. [17] 陳建元, 兩點近似法於結構最佳化設計之應用, 台大機械工程學研究所碩士論文, 2002. [18] M. Bruyneel, and C. Fleury, “Composite structures optimization using sequential convex programming,” In: Topping, B.H.V. (ed.) Proc.5-th International Conference on Computational Structures Technology, pp. 243–254. Edinburgh: Civil Comp, 2002. [19] J. A. Snyman, and N. Stander, “New successive approximation method for optimum structural design,” AIAA Journal, Vol.32, No.6, June 1994. [20] W. H. Zhang, and C. Fleury, “A modification of convex approximation methods for structural optimization,” Computers and Structures, Vol.64, No.1-4, pp.89-95, 1997. [21] S. Xu, and R. V. Grandhi, “Effective two-point function approximation for design optimization,” AIAA Journal, Vol.36, No.12, December 1998. [22] G. Xu, K. Yamazaki, and G. D. Cheng, “A new two-point approximation approach for structural optimization,” Struct Multidisc Optim, Vol.20, pp.22-28, 2000. [23] G. Magazinovic, “Two-point mid-range approximation enhanced recursive quadratic programming method,” Struct Multidisc Optim, Vol.7, 2005. [24] J. Rasmussen, “Nonlinear programming by cumulative approximation refinement,” Structural Optimization, Vol.15, pp.1-7, 1998. [25] E. Salajegheh, “Optimum design of plate structures using three-point approximation,” Structural Optimization, Vol.13, pp.143-147, 1997. [26] S. Xu, and R. V. Grandhi, “Multipoint approximation development: thermal structural optimization case study,” Int. J. Numer. Meth. Engng, Vol.48, pp.1151-1164 2000. [27] X. Guo, K. Yamazaki, and G.D. Cheng, “A new three-point approximation approach for design optimization problems,” Int. J. Numer. Meth. Engng, Vol.50, pp.869-884, 2001. [28] R. T. Haftka, and Z. Gurdal, Elements of Structural Optimization, Dordrecht: Kluwer, 1992. [29] U. Kirsch, Structural Optimization Fundamental and Applications, Springer-Verlag Berlin Heidelberg, 1993. [30] 黃侯瑋, 結構最佳化設計之準二次兩點指數近似法, 台大機械工程學研究所碩士論文, 2005. [31] 張耀仁, 結構最佳化設計之準二次兩點保守近似法, 台大機械工程學研究所碩士論文, 2007. [32] M. Bruyneel, P. Duysinx, and C. Fleury, “A family of MMA approximations for structural optimization,” Struct Multidisc Optim, Vol.24, pp.263-276, 2002. [33] J. A. Snyman, J. E. Rooda, A. A. Groenwold, L. F. P. Etman, “Incomplete series expansion for function approximation,” Struct Multidisc Optim, 2007. [34] D. W. Wood, A. A. Groenwold, L. F. P. Etman, “Approximated approximations for SAO,” Struct Multidisc Optim, 2009. [35] 陳建岳, 使用商用有限元素軟體之結構最佳設計方法, 台大機械工程學研究所碩士論文, 1996. [36] 林奕鴈, 兩點近似階數調整之結構優化法, 台大機械工程學研究所碩士論文, 1997. [37] R. I. Harless, “A method for synthesis of optimal weight structures,” Computers and Structures, Vol.12, pp.791-804, 1980. [38] C. C. Wu, and J. S. Arora, “Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure,” AIAA Journal, Vol.25, No.8, pp.1118-1125, 1987. [39] 邱求慧, 結構最佳設計保守近似法之改良, 台大機械工程學研究所博士論文, 2000. [40] G. Taleb-Agha, and R.B. Nelson, “Method for the optimum design of truss-type structures,” AIAA Journal, Vol.14, No.4, pp.436-445, 1976. [41] T. C. Sun, and Y. T. Lin, “Weight optimization of nonlinear structural systems using various shapes of beam elements,” Proc. of The Tenth National Conf. of CSME, pp.157-166, 1993. [42] 朱志祥, 精密定位平面運動平台之結構設計與分析, 台大機械工程學研究所碩士論文, 2010. [43] 馬嘉宏, AOI機台之結構最佳化與熱補償設計, 台大機械工程學研究所碩士論文, 2010. [44] R. J. Yang, and M. E. Botkin, “A modular approach for three-dimensional shape optimization of structures,” AIAA Journal, Vol.25, No.3, pp.492-497, 1987. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46992 | - |
dc.description.abstract | 本文將結構最佳化中之保守近似法一般化,並提出基於移動漸進線近似法與高階凸線性近似法之保守近似法,稱為指數移動漸進線近似法。在此法之中,以兩連續設計點之函數值與靈敏度值建構近似函數,並利用設計變數之上下界增加近似函數之保守度。經由此近似法,可將結構之行為函數,諸如應力、位移、自然頻率及動態響應等,轉換成設計變數的顯函數;如此一來,運用傳統數值最佳化方法即能有效求解近似問題。本文並結合最佳化理論與有限元素分析軟體,發展一套整合程式以求解結構最佳設計問題。結果顯示在一般結構最佳設計問題之中,利用此法能快速找到收斂並且正確的解;同時也顯示出本法在結構最佳化中之效率及實用性。 | zh_TW |
dc.description.abstract | This thesis generalizes the conservative approximation method for structural optimization and presents a new approach which is based on the method of moving asymptotes and higher order convex approximation, named exponential MMA. In this method, approximated functions are constructed by the function values and sensitivities of two successive design points; in addition, the functional convexities are improved by means of the bounds of design variables. With the use of the proposed approximation method, the structural behavior functions, such as stress, displacement, natural frequency or dynamic response, can be converted to the explicit form of design variables. Therefore, utilizing the conventional optimization techniques can efficiently solve the approximated problems. A computer program is also developed by integrating the optimization theorem and the finite element software ANSYS to solve structural optimum design problems. The result demonstrates that the proposed method can quickly find the convergent and accurate solutions for general structural optimization problems, and it also proves that this method is efficient and practical in structural optimization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:44:48Z (GMT). No. of bitstreams: 1 ntu-99-R95522633-1.pdf: 1121506 bytes, checksum: a56bf5b495847b1751474e78f36bdcb0 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V Table of Contents VII List of Figures IX List of Tables XI List of Symbols XIII Chapter 1 Overview 1 1.1 Introduction to structural optimization 1 1.2 Paper review 2 1.3 Strategies of research 6 1.4 Outline 7 Chapter 2 Approximation Method 9 2.1 Structural optimization theory 9 2.1.1 Treatment of design variable 10 2.1.2 Treatment of objective function 11 2.1.3 Treatment of constraint 11 2.2 Single-point approximation method 13 2.2.1 Direct linear approximation method 13 2.2.2 Reciprocal approximation method 14 2.2.3 Modified reciprocal approximation method 15 2.2.4 Posynomial approximation method 15 2.2.5 Conservative and convex approximation method 16 2.2.6 Method of moving asymptotes, MMA 17 2.2.7 Higher-order convex approximation method 18 2.3 Two-point approximation method 18 2.3.1 Two-point modified reciprocal approximation method 19 2.3.2 Two-point exponential approximation method 20 2.3.3 Two-point posynomial approximation method 21 2.3.4 Two-point adaptive nonlinear approximation 21 2.3.5 Two-point adaptive nonlinear approximation-1 22 2.3.6 Modified two-point approximation method 23 2.3.7 Gradient-based MMA 24 2.4 Direct quadratic approximation method 25 2.5 Quasi-quadratic approximation method 26 2.5.1 Spherical approximation method 26 2.5.2 Two-point adaptive nonlinear approximation-2 27 2.5.3 Modified convex approximation 29 2.5.4 Two-point adaptive nonlinear approximation-3 29 2.5.5 New two-point approximation approach 31 2.5.6 Quasi-quadratic two-point exponential approximation 32 Chapter 3 Generalized Conservative Approximation Method 35 3.1 Preface 35 3.2 Exponential MMA 36 3.3 Sensitivity analysis 41 3.4 Numerical optimization method 43 3.5 Procedure and architecture of optimization 44 Chapter 4 Optimization of Small Scale Structures 45 4.1 3-bar truss optimization 45 4.2 4-bar truss optimization 48 4.3 6-bar truss optimization 50 4.4 10-bar truss optimization 52 4.5 25-bar truss optimization 54 4.6 Multi-section circular beam optimization 56 4.7 Multi-section tube beam optimization 58 4.8 Multi-section rectangular beam optimization 61 Chapter 5 Optimization of Large Scale Structures 65 5.1 Carriage of planar motion stage 65 5.2 X-axis beam of AOI machine 70 Chapter 6 Conclusion and Suggestion 75 6.1 Conclusions 75 6.2 Suggestions 76 References 77 Appendix A: User Manual for Integrated Optimization Program 83 A.1 Architecture 83 A.2 Manipulation of the integrated program 84 A.3 Environment and setting 85 Appendix B: Optimum Design of a 3D Beam 91 B.1 Formulation of the 3D beam example 91 B.2 Execution process for the 3D beam example 92 | |
dc.language.iso | en | |
dc.title | 結構最佳化之指數移動漸進線近似法 | zh_TW |
dc.title | Exponential MMA Approximation for Structural Optimization | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳文方,劉正良 | |
dc.subject.keyword | 結構最佳化,保守近似法,凸線性近似法,有限元素法, | zh_TW |
dc.subject.keyword | Structural optimization,Conservative approximation method,Convex linearization,Finite element method, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。