請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中天 | |
| dc.contributor.author | Mei-Hsuan Yueh | en |
| dc.contributor.author | 岳美萱 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:44:00Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | Arnhold S, Klein H, Semkova I, Addicks K, and Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45: 4251-4255, 2004.
Baker PS, and Brown GC. Stem-cell therapy in retinal disease. Curr Opin Ophthalmol 20: 175-181, 2009. Battelle BA, and LaVail MM. Rhodopsin content and rod outer segment length in albino rat eyes: modification by dark adaptation. Exp Eye Res 26: 487-497, 1978. Biros DJ. Ocular Immunity. In: Gelatt KN, ed. Veterinary Ophthalmology. Blackwell Pub., Ames, Iowa, 223-235, 2007. Bounds GW, Jr. The electroretinogram; a review of the literature. AMA Arch Ophthalmol 49: 63-89, 1953. Bowers F, Valter K, Chan S, Walsh N, Maslim J, and Stone J. Effects of oxygen and bFGF on the vulnerability of photoreceptors to light damage. Invest Ophthalmol Vis Sci 42: 804-815, 2001. Grimm C, Reme CE, Rol PO, and Williams TP. Blue light's effects on rhodopsin: photoreversal of bleaching in living rat eyes. Invest Ophthalmol Vis Sci 41: 3984-3990, 2000a. Grimm C, Wenzel A, Hafezi F, Yu S, Redmond TM, and Reme CE. Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nat Genet 25: 63-66, 2000b. Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, and Reme C. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 42: 497-505, 2001. Guo Y, Saloupis P, Shaw SJ, and Rickman DW. Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient ischemia. Invest Ophthalmol Vis Sci 44: 3194-3201, 2003. Hafezi F, Marti A, Munz K, and Reme CE. Light-induced apoptosis: differential timing in the retina and pigment epithelium. Exp Eye Res 64: 963-970, 1997. Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, Grimm C, Reme CE, and Lem J. Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32: 254-260, 2002. Heilig P, Rozanova E, and Godnic-Cvar J. Retinal light damage. Spektrum der Augenheilkunde 23: 240-248, 2009. Hodges MD, Gregory-Evans CY, and Gregory-Evans K. A clearer view of stem cells in retinal disease. In: Habib NA, ed. Stem Cell Repair and Regeneration. Imperial College Press ; Distributed by World Scientific Publishing, London Hackensack, NJ, 227-245, 2005. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, and Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85: 234-241, 2007. Keller C, Grimm C, Wenzel A, Hafezi F, and Reme C. Protective effect of halothane anesthesia on retinal light damage: inhibition of metabolic rhodopsin regeneration. Invest Ophthalmol Vis Sci 42: 476-480, 2001. Kuwabara T, and Funahashi M. Light damage in the developing rat retina. Arch Ophthalmol 94: 1369-1374, 1976. Lamba D, Karl M, and Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2: 538-549, 2008. Lee H, Park J, Forget BG, and Gaines P. Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen Med 4: 759-769, 2009. Li F, Cao W, and Anderson RE. Alleviation of constant-light-induced photoreceptor degeneration by adaptation of adult albino rat to bright cyclic light. Invest Ophthalmol Vis Sci 44: 4968-4975, 2003. Lin CT, Gould DJ, Petersen-Jonest SM, and Sargan DR. Canine inherited retinal degenerations: update on molecular genetic research and its clinical application. J Small Anim Pract 43: 426-432, 2002. Liu C, Peng M, Laties AM, and Wen R. Preconditioning with bright light evokes a protective response against light damage in the rat retina. J Neurosci 18: 1337-1344, 1998. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, and Ali RR. Retinal repair by transplantation of photoreceptor precursors. Nature 444: 203-207, 2006. Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, and Palczewski K. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284: 15173-15183, 2009. Malik S, Cohen D, Meyer E, and Perlman I. Light damage in the developing retina of the albino rat: an electroretinographic study. Invest Ophthalmol Vis Sci 27: 164-167, 1986. Narfstrom K. Electroretinography in veterinary medicine--easy or accurate? Vet Ophthalmol 5: 249-251, 2002. Narfstrom K, Ekesten B, Rosolen SG, Spiess BM, Percicot CL, and Ofri R. Guidelines for clinical electroretinography in the dog. Doc Ophthalmol 105: 83-92, 2002. Nguyen BK, Maltais S, Perrault LP, Tanguay JF, Tardif JC, Stevens LM, Borie M, Harel F, Mansour S, and Noiseux N. Improved Function and Myocardial Repair of Infarcted Heart by Intracoronary Injection of Mesenchymal Stem Cell-Derived Growth Factors. J Cardiovasc Transl Res. Nilsson SE. From basic to clinical research: a journey with the retina, the retinal pigment epithelium, the cornea, age-related macular degeneration and hereditary degenerations, as seen in the rear view mirror. Acta Ophthalmol Scand 84: 452-465; 451, 2006. Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 20: 1163-1171, 1980. Noell WK, Walker VS, Kang BS, and Berman S. Retinal damage by light in rats. Invest Ophthalmol 5: 450-473, 1966. O'Steen WK, and Anderson KV. Photoreceptor degeneration after exposure of rats to incandescent illumination. Z Zellforsch Mikrosk Anat 127: 306-313, 1972. O'Steen WK, Anderson KV, and Shear CR. Photoreceptor degeneration in albino rats: dependency on age. Invest Ophthalmol 13: 334-339, 1974. Ofri R. Optics and physiology of vison. In: Gelatt KN, ed. Veterinary Ophthalmology. Blackwell Pub., Ames, Iowa, 195-200, 2007. Ofri R. Retina. In: Maggs DJ, Miller PE, Ofri R, and Slatter DH, ed. Slatter's Fundamentals of Veterinary Ophthalmology. Saunders Elsevier, St. Louis, Mo., 285-317, 2008. Ofri R, and Narfstrom K. Light at the end of the tunnel? Advances in the understanding and treatment of glaucoma and inherited retinal degeneration. Vet J 174: 10-22, 2007. Organisciak DT, Darrow RM, Noell WK, and Blanks JC. Hyperthermia accelerates retinal light damage in rats. Invest Ophthalmol Vis Sci 36: 997-1008, 1995. Organisciak DT, and Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res 29: 113-134, 2010. Orlic D. Stem cell repair in ischemic heart disease: an experimental model. Int J Hematol 76 Suppl 1: 144-145, 2002. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, and Friedlander M. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114: 765-774, 2004. Pellegrini G, De Luca M, and Arsenijevic Y. Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 18: 805-818, 2007. Penn JS, and Anderson RE. Effect of light history on rod outer-segment membrane composition in the rat. Exp Eye Res 44: 767-778, 1987. Petersen-Jones S. Advances in the molecular understanding of canine retinal diseases. J Small Anim Pract 46: 371-380, 2005. Rapp LM, and Williams TP. A parametetric study of retinal light damage in albino and pigmented rats. In: Williams TP, and Baker BN, ed. The Effects of Constant Light on Visual Processes. Plenum Press, New York, 135-160, 1980. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekstrom P, and Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38: 253-269, 2008. Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, and Peer J. Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18: 689-735, 1999. Takahashi K, and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676, 2006. Takahashi M, Palmer TD, Takahashi J, and Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12: 340-348, 1998. Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H, Ikebukuro K, Kaneda H, Matsumura M, and Ikehara S. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20: 279-283, 2002. Torquetti L, Castanheira P, de Goes AM, and Marcio N. Stem cells: potential source for retinal repair and regeneration. Arq Bras Oftalmol 70: 371-375, 2007. Tsonis PA, and Del Rio-Tsonis K. Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res 78: 161-172, 2004. Turner JE, and Blair JR. Newborn rat retinal cells transplanted into a retinal lesion site in adult host eyes. Brain Res 391: 91-104, 1986. Wenzel A, Grimm C, Marti A, Kueng-Hitz N, Hafezi F, Niemeyer G, and Reme CE. c-fos controls the 'private pathway' of light-induced apoptosis of retinal photoreceptors. J Neurosci 20: 81-88, 2000. Wenzel A, Grimm C, Samardzija M, and Reme CE. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24: 275-306, 2005. Wenzel A, Reme CE, Williams TP, Hafezi F, and Grimm C. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci 21: 53-58, 2001. Yanagisawa D, Qi M, Kim DH, Kitamura Y, Inden M, Tsuchiya D, Takata K, Taniguchi T, Yoshimoto K, Shimohama S, Akaike A, Sumi S, and Inoue K. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neurosci Lett 407: 74-79, 2006. Yang D, Zhang ZJ, Oldenburg M, Ayala M, and Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26: 55-63, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46955 | - |
| dc.description.abstract | 在大鼠進行光誘導視網膜退化可以用來模仿視網膜退化疾病中視覺細胞細胞凋亡的狀況,近期研究中發現,在心肌梗塞的豬移植間質幹細胞可以經由幹細胞分泌的物質造成保護效果,進而達到心肌功能的回復,而非直接的心肌再生。因此本研究目的為了解Sprague-Dawley (SD)大鼠的視網膜退化模式中誘導式多能性幹細胞(induced-Pluripotent stem cells; iPS cells)是否具有視網膜保護效果。在經過12000Lux的白光照射2小時後,在30分鐘內,玻璃體內注射iPS cells (10000顆細胞/μl;100000顆細胞/μl;1000000顆細胞/μl;分別注射0.01ml)以及PBS 0.1mL (Vehicle組)。受試大鼠的視網膜功能以視網膜電波圖(Electroretinogram)分別在暴露前與光暴露後第24、第48、第96小時,以及第7天進行測量。光照後視網膜電波圖a波和b波的振幅(μV)除以光照前的振幅可以得到殘留百分比(Residual Persentage),並且在7天後取大鼠眼睛作成組織切片觀察其視網膜型態,以及測量視網膜和視網膜外核層的厚度,統計以ANOVA來計算各時間點的視網膜電波圖a波和b波的殘留百分比,以及視網膜和視網膜外核層在7天後各組之間有無顯著差異(P<0.05)。結果發現誘導式多能性幹細胞治療組的殘留百分比和視網膜以及視網膜外核層厚度皆和未治療組有顯著差異,且發現使用100000顆細胞/μl的濃度可以得到最佳的效果,但在高濃度組會造成炎症反應。總結在本研究中發現,在光傷害的視網膜玻璃體內注射誘導式多能性幹細胞,具有保護的效果。 | zh_TW |
| dc.description.abstract | Light-induced retinal degeneration in a rat model was used to mimic the visual cell apoptosis of retinal degenerations. Recent reserchs found that transplantation of mesenchymal stem cells improves repair and functional recovery of myocardial infarction swine. The possible hyposis is that mesenchymal stem cells could achieve protection through release mediators rather than direct cardiac regeneration. Therefore, we aim to study whether induced-pluripotent stem cells (iPS cells) possess protect effects on degenerative retina in rats. iPS cells (10000 cells/μl, 100000 cells/μl, 1000000 cells/μl; 0.01ml) or vehicle (PBS; 0.01 ml) were injected intravitreally in Sprague-Dawley rats 30 minutes after exposure to 12000 lux of white light for two hours. The retinal function of the test rats were assessed by measuring the electroretinogram (ERG) before light damage and at 24 hours, 48 hours, and 96 hours, and seven days after light damage. The amplitude of a wave and b wave after light damage divided by the amplitude of a wave and b wave before light damage is equal to a wave and b wave residual percentage. The retinal sections were evaluated histologically and thickness of retina and outer nuclear layer (ONL) were measured. The residual percentage of retinal function and retinal thickness were statistically analysed by ANOVA.
Results showed that the residual ratio of ERG were significantly higher in the iPS-cells-treated group (n=12) than the control (n=8) and vehicle-treated (n=8) group, respectively. Retinal sections revealed that the ONL of the retina were preserved in the iPS-cells-treated group, and the thickness of retina and ONL in iPS-cells-treated group (n=3) was thicker than the control (n=3) and vehicle-treated group (n=3). Thus, the iPS cells provided protective effect in light induced retinal degenerative rats. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:44:00Z (GMT). No. of bitstreams: 1 ntu-99-R97643005-1.pdf: 4484286 bytes, checksum: fd233367b9fe7614bbdcccb7dbda6238 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 x 第一章 緒言 1 第二章 文獻探討 3 第一節 視網膜退化疾病介紹 3 第二節 光誘導視網膜病變 10 第三節 幹細胞治療的簡介 16 第三章 實驗材料與方法 20 第一節 實驗材料 20 第二節 實驗分組 20 第三節 光誘導視網膜病變 21 第四節 誘導式幹細胞的給予 22 第五節 視網膜電波圖 22 第六節 組織病理分析 24 第七節 特殊染色 24 第八節 統計分析方式 25 第四章 實驗結果 26 第一節 視網膜電波圖 26 第二節 組織病理之結果 32 第三節 特殊染色之結果 36 第五章 討論 38 第一節 光誘導視網膜病變在大鼠模式的建立 38 第二節 誘導式多能性幹細胞之成效 41 第三節 誘導式多能性幹細胞的分布 43 第四節 限制 45 第六章 結論 46 參考文獻 47 附錄A A-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 視網膜光傷害 | zh_TW |
| dc.subject | 誘導式多能性幹細胞 | zh_TW |
| dc.subject | 幹細胞治療 | zh_TW |
| dc.subject | 光誘導視網膜病變 | zh_TW |
| dc.subject | 犬遺傳性視網膜病變 | zh_TW |
| dc.subject | Canine inherited retinal degeneration | en |
| dc.subject | Photodamage | en |
| dc.subject | Induced-pluripotent stem cells | en |
| dc.subject | iPS cells | en |
| dc.subject | stem cells | en |
| dc.subject | Light induced retinal degeneration | en |
| dc.title | 探討誘導式多能性幹細胞於光誘導視網膜病變大鼠之效果 | zh_TW |
| dc.title | Effect of Induced Pluripotent Stem Cells on Experimental Light-Induced Retinal Degeneration in Rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱士華 | |
| dc.contributor.oralexamcommittee | 劉振軒,詹東榮,李憶菁 | |
| dc.subject.keyword | 誘導式多能性幹細胞,幹細胞治療,光誘導視網膜病變,犬遺傳性視網膜病變,視網膜光傷害, | zh_TW |
| dc.subject.keyword | Induced-pluripotent stem cells,iPS cells,stem cells,Light induced retinal degeneration,Canine inherited retinal degeneration,Photodamage, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
