請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾添東 | |
| dc.contributor.author | Chih-Yun Lu | en |
| dc.contributor.author | 盧芷筠 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:43:46Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | [1] D. Liu, L. Peng, and X. Lai, “Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell” Journal of Hydrogen Energy 34, 990-997, 2009.
[2] W. K. Lee, C. H. Ho, J. W. V. Zee, and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Source 84, 45-51, 1999. [3] A. Vlahinos, K. Kelly, J. D’Aleo , and J. Stathopoulos, “Effect of material and manufacturing variations on membrane electrode assembly pressure distribution,” Proceedings of First International Conference on Fuel Cell Science, Engineering and Technology, 2003. [4] A. Kosuglu, A. M. Karlsson, Santare, M. H. S. Cleghorn, and W. B. Johnson, “Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle,” Journal of Power Sources 161, 987-996, 2006. [5] A. Kosuglu, A. M. Karlsson, Santare, M. H. S. Cleghorn, and W. B. Johnson, “Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses,” Journal of Power Sources 170, 345-358, 2007. [6] A. Vlahinos, K. Kelly, J. D’Aleo , and J. Stathopoulos, “Shape optimization of fuel cell molded-on gaskets for robust sealing,” Proceedings of Fourth International Conference on Fuel Cell Science, Engineering and Technology, 97106, 2006. [7] D. Liu, X. Lai, J. Ni, and Z. Lin, “Robust design of assembly parameters on membrane electrode assembly pressure distribution,” Journal of Power Sources 172, 760-767, 2007. [8] F. Barbir, J. Braun, and J. Neutzler, “Properties of molded graphite bi-polar plates for PEM fuel cell stacks,” Journal of New Materials for Electrochemical Systems 2, 197-200, 1999. [9] H. Wang, M. A. Sweikart, and J. A. Turner, “Stainless steel as bi-polar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources 155, 243-251, 2003. [10] J. Ihonen, F. Jaouen, G. Lindbergh, and G. Sundholm, “A Novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance Measurements,” Electrochim. Acta 46, 2899–2911, 2001. [11] J. A. Greenwood, and J. B. P. Williamson, 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A A295, 300–319, 1966. [12] M. G. Cooper, B. B. Mikic, and M. M. Yovanovich, “Thermal Contact Conductance,” International. Journal of Heat Mass Transfer 12, 279–300, 1969. [13] J.B.P. Williamson, “Deterioration processes in electrical connectors,” Pioc. 4th. Int Res Symp. Electrical Conracr Phenomena, Univ. College Swansea, 30-34, 1968. [14] A. Majumdar, C.L. Tien, Majumdar, A., and Tien, C. L., “Fractal Network Model for Contact Conductance,” ASME Journal of Heat Transfer 113, 516–525, 1991. [15] P. Zhou, C. W. Wu, and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources 159, 1115-1122, 2006. [16] V. Mishra, F. Yang, and R. Pitchumani, “Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cell,” Journal of Fuel Cell Science and Technology 1, 2004. [17] L. Zhang, Y. Liu, H. Song et al., “Estimation of contact resistance in proton exchange membrane fuel cells,” Journal of Power Sources 162, 1165-1171, 2006. [18] G. H. Neale and W. K. Nader, “Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles,” AIChE Journal 19, 112-119,1973. [19] J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration: influence on the performance of a PEMFC,” Journal of Power Sources 118, 172-178, 2003. [20] M. Prasanna, H. Y. Ha, E. A. Cao, et al., “Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal of Power Sources 84, 147-154, 2004. [21] J. G. Pharoah, “On the permeability of gas diffusion media used in PEM fuel cells,” Journal of Power Sources 144, 77-82, 2005. [22] P. Zhou, C. W. Wu, and G. J. Ma, “Influence of clamping force on the performance of PEMFCs,” Journal of Power Sources 163, 874-881, 2007. [23] H. Dohle, R. Jung, N. Kimiaie, et al., “Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells—experiments and simulation studies,” Journal of Power Sources 124, 371-384, 2003. [24] J. Ge, A. Higier, H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance,” Journal of Power Sources 159 , 922–927, 2006. [25] P. Zhou and C. W. Wu, “Numerical study on the compression effect of gas diffusion layer on PEMFC performance,” Journal of Power Sources 170, 93-100, 2007. [26] N. Zamel, X. Li, and J. Shen, “Correlation for the effective gas diffusion coefficient in carbon paper diffusion media,” Energy Fuels 23, 6070-6078, 2009. [27] M. Most, M. Rzepka, and U. Stimming, “Analysis of the diffusive mass transport in the anode side porous backing layer of a direct methanol fuel cell,” Journal of Power Source 191,456-464,2009. [28] EG&G Technical Services, Inc., Fuel Cell Handbook, seventh ed., Chapter 2, 2004. [29] I. B. Zaman, Study of dynamic behaviour of truck chassis, Master Paper, Faculty of Mechanical Engineering, University Technology Malaysia, 2005. [30] T. D. Sachdeva, C. V. Ramakrishnan and R. Natarajan, “A finite element method for the elastic contact problems,” Journal of Engineering for Industry 103, 456-461, 1976. [31] J. Larminie, A. Dicks, Fuel Cell Systems Explained, second ed., JohnWiley & Sons, 45-66, 2003. [32] K. H. Lee, S. H. Lee, J. H. Kim, Y. Y. Lee, Y. H. Kim, M. C. Kim, and D. M. Wee, “Effects of thermal oxi-nitridation on the corrosion resistance and electrical conductivity of 446M stainless steel for PEMFC bipolar plates,” Journal of Hydrogen Energy 34, 1515-1521, 2009. [33] A. Kazim and P. Lund, “Basic parametric study of a proton exchange membrane fuel cell,” Journal of Power and Energy 220, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46943 | - |
| dc.description.abstract | 本文提出一系統化的方法來評估不同參數下金屬雙極板的性能。首先利用有限元素分析取得燃料電池之結構特性,如金屬雙極板和氣體擴散層之間的接觸壓力,和氣體擴散層的應變分佈,一參數化模型用於此分析上。接著,燃料電池之性能可藉由一連串有限元素分析結果的推導來評估。接觸壓力和接觸電阻的關係可用於計算燃料電池之整體電阻,而氣體擴散層的應變和有效擴散率的關係可用於估計燃料電池的極限電流密度。然後透過計算電阻和極限電流密度來推導極化和功率曲線的理論公式。最後,經由極化和功率曲線來討論燃料電池性能和結構設計參數的關係,並進行結構最佳化流程得到最適當之肋構型和鎖合壓力以提升燃料電池之性能。總結來說,本文透過有限元素分析之結果來評估燃料電池之性能,並藉由調整燃料電池結構之設計變數完成燃料電池之最佳化設計,且該系統化的性能評估方法能得到一令人滿意之結構設計結果。 | zh_TW |
| dc.description.abstract | This thesis proposes a systematic method to evaluate the performance of a metallic bipolar plate fuel cell with different parameters. Firstly, a finite element analysis (FEA) is used to obtain the structural responses of the fuel cell stack, such as the contact pressure between gas diffusion layers (GDL) and metallic bipolar plates, and also the strain distribution of the GDL. A parametric model with given design parameters is developed for this analysis. Secondly, the performance of the fuel cell is evaluated from the results of the FEA through a series of derivations. The relationship between the contact pressure and contact resistance is used to calculate the whole electric resistance of the fuel cell. The relationship between the GDL strain and effective diffusion coefficient is studied to evaluate the limiting current density of the fuel cell. Then, the formulations for the polarization and power curves are derived with the calculated electric resistance and the computed limiting current density. Finally, the relationship between the fuel cell performance and the structural design parameters are discussed by the formulations of the polarization and power curves. The optimum design procedure is executed to improve the performance of fuel cell with the appropriate rib shape and clamping pressure. In conclusion, this thesis studies the relationships that can transfer the FEA results to the fuel cell performance and the optimization of the fuel cell performance by modifying the design parameters of the fuel cell structure. The systematic method of the performance evaluation gives a satisfactory result in the structural design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:43:46Z (GMT). No. of bitstreams: 1 ntu-99-R96522609-1.pdf: 8099185 bytes, checksum: 6be753ea6d4cfe329b5bc211d713199f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 III Abstract V 摘要 VI Table of Content VII List of Figures IX List of Tables XIII List of Symbol XV Chapter 1 Introduction 1 1.1 Paper review 3 1.1.1 Structural analysis of PEM fuel cell 3 1.1.2 Evaluation of contact resistance 4 1.1.3 Prediction of GDL porosity and limiting current density 7 1.2 Research motivation and purpose 9 1.3 Methodology 9 Chapter 2 Performance Evaluation of PEM Fuel Cell 11 2.1 Finite element theorems of finite element method 11 2.1.1 Theory of finite element structural static analysis 12 2.1.2 Theory of finite element contact analysis 13 2.2 Formulation for polarization curve 14 2.3 Contact resistance evaluation 17 2.4 GDL Porosity and limiting current density 19 2.4.1 Porosity calculation 19 2.4.2 Limiting current density 20 Chapter 3 Structural Analysis of PEM Fuel Cell 23 3.1 Parametric CAD model of PEM fuel cell 23 3.2 Finite element analysis model of PEM fuel cell 26 3.3 Results of finite element analysis for an actual case 28 Chapter 4 Evaluation of PEM Fuel Cell 33 4.1 Evaluation of contact resistance 34 4.1.1 Relation between contact pressure and contact resistance 34 4.1.2 Formulation of the total contact resistance 36 4.2 Evaluation of limiting current density 38 4.3 Formulation of polarization curve for PEM fuel cell 41 4.4 Result and discussion for the evaluation of PEM fuel cell 44 Chapter 5 Polarization Curve for Parameters of Bipolar Plate 49 5.1 Polarization curve for parameters of metallic bipolar plate 49 5.1.1 Effects of clamping pressure 49 5.1.2 Effects of the widths of channel and rib 52 5.1.3 Effects of the draft angle 56 5.1.4 Result discussions for different parameters of fuel cells 60 5.2 Optimization for the performance of PEM fuel cell 60 5.2.1 Integrated optimum design program 61 5.2.2 Optimization design problem 62 5.2.3 Optimization design solution 64 Chapter 6 Conclusions and Suggestions 71 6.1 Conclusions 71 6.2 Suggestions 73 Reference 75 Appendix A Parametric Model Program for PEM Fuel Cells 79 Appendix B Macro Program for Contact Analysis of Fuel Cells 83 Appendix C Operation Instruction of Integrated Program 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 性能評估 | zh_TW |
| dc.subject | 金屬雙極板 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 極限電流密度 | zh_TW |
| dc.subject | 肋構型 | zh_TW |
| dc.subject | metallic bipolar plate | en |
| dc.subject | performance evaluation | en |
| dc.subject | rib shape | en |
| dc.subject | limiting current density | en |
| dc.subject | contact resistance | en |
| dc.subject | finite element analysis | en |
| dc.title | 燃料電池金屬雙極板之結構設計與分析 | zh_TW |
| dc.title | Structural Design and Analysis of Metallic Bipolar Plates for Fuel Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉正良,許桓瑞 | |
| dc.subject.keyword | 金屬雙極板,有限元素分析,接觸電阻,極限電流密度,肋構型,性能評估, | zh_TW |
| dc.subject.keyword | metallic bipolar plate, finite element analysis, contact resistance, limiting current density, rib shape, performance evaluation, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
