Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46941
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.authorChien-Chun Hsuen
dc.contributor.author徐健峻zh_TW
dc.date.accessioned2021-06-15T05:43:43Z-
dc.date.available2012-08-01
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation[1] Ieee standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems, IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), pp. C1 2004, may 2009.
[2] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, Lteadvanced: next-generation wireless broadband technology [invited paper], Wireless Communications, IEEE, vol. 17, pp. 10 22, june 2010.
[3] L. Ho and H. Claussen, E ects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario, in Personal, Indoor and Mobile Radio
Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, pp. 1 5, 3-7 2007.
[4] V. Chandrasekhar and J. Andrews, Uplink capacity and interference avoidance for two-tier femtocell networks, Wireless Communications, IEEE Transactions on, vol. 8, pp. 3498 3509, july 2009.
[5] K. Han, Y. Choi, D. Kim, M. Na, S. Choi, and K. Han, Optimization of femtocell network con guration under interference constraints, in Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2009. WiOPT 2009.
7th International Symposium on, pp. 1 7, 2009.
[6] V. Chandrasekhar, J. Andrews, and A. Gatherer, Femtocell networks: a survey, Communications Magazine, IEEE, vol. 46, pp. 59 67, september 2008.
[7] S. ping Yeh, S. Talwar, S. choon Lee, and H. Kim, Wimax femtocells: a perspective on network architecture, capacity, and coverage, Communications Magazine, IEEE, vol. 46, pp. 58 65, october 2008.
[8] P. Kulkarni, W. H. Chin, and T. Farnham, Radio resource management considerations for lte femto cells, SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 26 30, 2010.
[9] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, Interference coordination and cancellation for 4g networks, Communications Magazine, IEEE, vol. 47, pp. 74 81, april 2009.
[10] X. Li, L. Qian, and D. Kataria, Downlink power control in co-channel macrocell femtocell overlay, in Information Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on, pp. 383 388, 2009.
[11] V. Chandrasekhar, J. Andrews, T. Muharemovic, Z. Shen, and A. Gatherer, Power control in two-tier femtocell networks, Wireless Communications, IEEE Transactions on, vol. 8, no. 8, pp. 4316 4328, 2009.
[12] F. Bernardo, R. Agustà and, J. Cordero, and C. Crespo, Self-optimization of spectrum assignment and transmission power in ofdma femtocells, in elecommunications (AICT), 2010 Sixth Advanced International Conference on, pp. 404 409, 9-15 2010.
[13] J. Kim and D.-H. Cho, A joint power and subchannel allocation scheme maximizing system capacity in dense femtocell downlink systems, in Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on, pp. 1381 1385, 13-16 2009.
[14] Y. Bai, J. Zhou, L. Liu, L. Chen, and H. Otsuka, Resource coordination and interference mitigation between macrocell and femtocell, in Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium
on, pp. 1401 1405, 13-16 2009.
[15] Z. Bharucha, H. Haas, G. Auer, and I. Cosovic, Femto-cell resource partitioning, in GLOBECOM Workshops, 2009 IEEE, pp. 1 6, 2009.
[16] V. Chandrasekhar and J. Andrews, Spectrum allocation in tiered cellular networks, Communications, IEEE Transactions on, vol. 57, no. 10, pp. 3059 3068, 2009.
[17] T.-H. Kim and T.-J. Lee, Throughput enhancement of macro and femto networks by frequency reuse and pilot sensing, in Performance, Computing and Communications Conference, 2008. IPCCC 2008. IEEE International, pp. 390
394, 7-9 2008.
[18] P. Lee, T. Lee, J. Jeong, and J. Shin, Interference management in lte femtocell systems using fractional frequency reuse, in Advanced Communication Technology ICACT), 2010 The 12th International Conference on, vol. 2, pp. 1047 1051, 7-10 2010.
[19] G. Li and H. Liu, Downlink radio resource allocation for multi-cell ofdma system, Wireless Communications, IEEE Transactions on, vol. 5, pp. 3451 3459, december 2006.
[20] D. Lopez-Perez, G. de la Roche, A. Valcarce, A.Juttner, and J. Zhang, Interference avoidance and dynamic frequency planning for wimax femtocells networks, in Communication Systems, 2008. ICCS 2008. 11th IEEE Singapore International Conference on, pp. 1579 1584, 19-21 2008.
[21] M. Rahman and H. Yanikomeroglu, Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination, Wireless Communications, IEEE Transactions on, vol. 9, pp. 1414 1425, april 2010.
[22] K. Sundaresan and S. Rangarajan, Efficient resource management in ofdma femto cells, in MobiHoc '09: Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing, (New York, NY, USA), pp. 33 42, ACM, 2009.
[23] Y. Wu, D. Zhang, H. Jiang, and Y. Wu, A novel spectrum arrangement scheme for femto cell deployment in lte macro cells, in Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on, pp. 6 11, 13-16 2009.
[24] S. Marinkovi, E. Popovici, C. Spagnol, S. Faul, and W. Marnane, Energy efficient low duty cycle mac protocol for wireless body area networks, Information Technology in Biomedicine, IEEE Transactions on DOI -1109/TITB.2009.2033591, vol. 13, no. 6, pp. 915 925, 2009.
[25] Y. Wu, S. Fahmy, and N. Shro , Energy efficient sleep/wake scheduling for multi-hop sensor networks: Non-convexity and approximation algorithm, in INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE DOI - 10.1109/INFCOM.2007.184, pp. 1568 1576, 2007.
[26] Draft amendment to ieee standard for local and metropolitan area networks part 16: Air interface for xed and mobile broadband wireless access systems, IEEE P802.16m/D4 Feb 2010, 2010.
[27] S. Ali and V. Leung, Dynamic frequency allocation in fractional frequency reused ofdma networks, Wireless Communications, IEEE Transactions on, vol. 8, pp. 4286 4295, august 2009.
[28] Wimax forum network architecture release 1.6: Femtocells.
[29] P. J. Zhang and D. G. de la Roche, Femtocells: Technologies and Deployment. Wiley, January 2010.
[30] H. Yin and S. Alamouti, Ofdma: A broadband wireless access technology, in Sarno Symposium, 2006 IEEE, pp. 1 4, 27-28 2006.
[31] R.-T. Juang, P. Ting, H.-P. Lin, and D.-B. Lin, Interference management of femtocell in macro-cellular networks, in Wireless Telecommunications Symposium (WTS), 2010, pp. 1 4, 21-23 2010.
[32] D. Lopez-Perez, A. Valcarce, G. de la Roche, and J. Zhang, Ofdma femtocells: A roadmap on interference avoidance, Communications Magazine, IEEE, vol. 47, pp. 41 48, september 2009.
[33] N. Ksairi, P. Bianchi, P. Ciblat, and W. Hachem, Resource allocation for downlink cellular ofdma systems; part i: Optimal allocation, Signal Processing, IEEE Transactions on, vol. 58, pp. 720 734, feb. 2010.
[34] N. Ksairi, P. Bianchi, P. Ciblat, and W. Hachem, Resource allocation for downlink cellular ofdma systems; part ii: Practical algorithms and optimal reuse factor, Signal Processing, IEEE Transactions on, vol. 58, pp. 735 749, feb. 2010.
[35] K. Seong, M. Mohseni, and J. Cio , Optimal resource allocation for ofdma downlink systems, in Information Theory, 2006 IEEE International Symposium on, pp. 1394 1398, 9-14 2006.
[36] M. Necker, Interference coordination in cellular ofdma networks, Network, IEEE, vol. 22, pp. 12 19, november-december 2008.
[37] M. Wang and T. Ji, Dynamic resource allocation for interference management in orthogonal frequency division multiple access cellular communications, Communications, IET, vol. 4, pp. 675 682, april 2010.
[38] H. G. Myung, Technical overview of 3gpp lte, May 2008.
[39] H. W. Kuhn, The hungarian method for the assignment problem, vol. 2, no. 1-2, pp. 83 97, 1955.
[40] Z. Zhang, Y. He, and E. Chong, Opportunistic downlink scheduling for multiuser ofdm systems, in Wireless Communications and Networking Conference, 2005 IEEE, vol. 2, pp. 1206 1212 Vol. 2, 13-17 2005.
[41] W. GANDER, Algorithms for the qr-decomposition, tech. rep., ANGEWANDTE MATHEMATIK EIDGENOESSISCHE TECHNISCHE HOCHSCHULE, 1980.
[42] T. F. Coleman and Y. Li, On the convergence of re ective newton methods for large-scale nonlinear minimization subject to bounds, tech. rep., Ithaca, NY, USA, 1992.
[43] T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on Optimization, vol. 6, no. 2, pp. 418 445, 1996.
[44] J. Till, S. Engell, S. Panek, and O. Stursberg, Applied hybrid system optimization: An empirical investigation of complexity, Control Engineering Practice,vol. 12, no. 10, pp. 1291 1303, 2004. Analysis and Design of Hybrid Systems.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46941-
dc.description.abstract在超微型基地台(Femtocell)網路中,由於超微型基地台服務範圍小、數量多以及非規劃佈建之特性,與上層基地台的干擾處理是一個重要的議題。因此,在次世代IEEE 802.16m標準中,特別針對超微型基地台提出低負載模式(Low-Duty Operation Mode)處理干擾問題。當超微型基地台無任何服務中的使用者或是所有服務中的使用者都進入睡眠模式時,超微型基地台可以週期性地控制訊號傳輸模式以減少對周圍基地台的干擾。此「被動式」的低負載模式由於有其使用的侷限性,所以無法廣泛而有效率地處理干擾問題。在本論文中,我們提出「主動式」的低負載模式,結合資源分配機制來處理超微型基地台網路的干擾問題。我們建構一個超微型基地台網路之最佳化數學模型,能在最大化網路系統容量及使用者滿意度的目標下減少對上層基地台的干擾。為了解決此最佳化問題,我們將問題轉化成線性規劃,提出一最佳化演算法,並限制最大近似誤差以求得最佳解。利用此最佳化模型,我們首先分析在不同網路環境下最佳之低負載模式設計參數,包括其負載周期以及傳輸區間比例。其次,考慮到最佳化演算法需要搜集所有使用者資訊,複雜度過高,因此我們提出一個兩階段的演算法以減少計算複雜度。使用電腦模擬的結果顯示,此兩階段演算法在犧牲約10%的通道容量下,可減少90%以上的計算複雜度與執行時間,而能有效地解決超微型基地台網路的干擾問題。zh_TW
dc.description.abstractIn two-tier networks, due to characteristics of short service range, great of number and ad-hoc deployment in femtocell, the processing of interference to the upper tier is a critical issue. In next-generation mobile system, IEEE 802.16m, the low-duty operation mode is proposed to reduce interference from neighboring femtocells. When the femtocell without any service user or all users operating in sleep mode, the femtocell can enter low-duty operation mode and periodically control transmission for reducing interference to neighbors. Due to the limitation of operation, this reactive low-duty operation mode can not mitigate interference widely and effectively.
In this thesis, we propose a proactive low-duty operation mode, combined with resource allocation to manage interference in femtocell networks. Then we construct a optimization model, and it can maximize system capacity and reduce the interference to upper tier under satisfying user's requirement. To resolve this optimization problem, we then reformulate it into linear programming problem with controlling approximation error. Using this optimization model, we first investigate in different network environments the optimal parameters of low-duty operation mode, including its duty cycle length and available interval ratio. Secondly, due to global information requirement and high complexity of optimization framework, we propose a two-stage algorithm to reduce computational complexity. The simulation results show that this two-stage algorithm around 10% at the expense of system capacity, it can reduce more than 90% computation complexity, and can effectively manage interference in femtocell networks.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:43:43Z (GMT). No. of bitstreams: 1
ntu-99-R97942126-1.pdf: 2462194 bytes, checksum: 71ead4e7f121da5eccea3b171c38ee63 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND AND MOTIVATION . . . . . . . . 4
2.1 Femtocell Network and Architecture . . . . . . . . . . . . . . . . . . 4
2.2 OFDMA Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Interference Management in OFDMA Femtocells . . . . . . . . . . . 7
2.3.1 Femtocell to Macrocell Interference . . . . . . . . . . . . . . 7
2.3.2 Femtocell to Femtocell Interference . . . . . . . . . . . . . . 10
2.4 Two Level Resource Allocation in OFDMA Networks . . . . . . . . . 12
2.4.1 Controller Level Resource Allocation . . . . . . . . . . . . . . 13
2.4.2 BS Level Resource Allocation . . . . . . . . . . . . . . . . . . 13
2.5 Low-Duty Operation Mode . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.1 Comparison for One Slot Time . . . . . . . . . . . . . . . . 16
2.6.2 Comparison for LDM Cycle Time . . . . . . . . . . . . . . . 18
CHAPTER 3 AN OPTIMIZATION FRAMEWORK FOR USING
LOW-DUTY OPERATION MODE . . . . . . . . . . . . . . . . . . 22
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Joint Resource Allocation and Low-Duty Operation Mode Scheme 22
3.1.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Optimization Problem Formulation . . . . . . . . . . . . . . . . . . 24
3.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Optimization Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Formulation Transformation . . . . . . . . . . . . . . . . . . 29
3.4 Piece-wise Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Maximal Approximation Error Derivation . . . . . . . . . . . 32
3.4.2 Asymptotic Approach . . . . . . . . . . . . . . . . . . . . . . 36
CHAPTER 4 OPTIMIZATION ANALYSIS OF LOW-DUTY OPERATION
MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Impact of Approximation Error . . . . . . . . . . . . . . . . . . . . . 41
4.3 Impact on Maximal Capacity . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Analysis in Dense Deployment Case . . . . . . . . . . . . . . 43
4.3.2 Impact of Femtocell Deployment Density . . . . . . . . . . . 47
4.3.3 Impact of Users per Femtocell . . . . . . . . . . . . . . . . . 48
4.3.4 Impact of Available Resource . . . . . . . . . . . . . . . . . . 49
4.4 Impact on Low-Duty Operation Mode . . . . . . . . . . . . . . . . . 51
4.4.1 Varying Femtocell and User Deployment . . . . . . . . . . . 51
4.4.2 Varying Required SINR . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Varying Available Resource . . . . . . . . . . . . . . . . . . . 54
CHAPTER 5 TWO-STAGE ALGORITHM . . . . . . . . . . . . . . 56
5.1 Design of Two Stage Interference Management . . . . . . . . . . . . 56
5.1.1 Fundamental Insight . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Macro BS Algorithm . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Femto BS Algorithm . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Controller Algorithm . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Comparison with varying Femtocell Number . . . . . . . . . 68
5.3.2 Comparison with varying LDM Cycle Length . . . . . . . . . 69
5.3.3 Comparison on Computation Complexity . . . . . . . . . . . 70
5.3.4 Signalling Overhead . . . . . . . . . . . . . . . . . . . . . . . 71
CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . 73
dc.language.isoen
dc.subject低負載模式zh_TW
dc.subject超微型基地台zh_TW
dc.subjectFemtocellen
dc.subjectLow duty operation modeen
dc.title以 802.16m 低負載模式減少超微型基地台干擾之分析與設計zh_TW
dc.titleOn Using the Low-Duty Operation Mode for Interference Mitigation in 802.16 Femtocellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖婉君(Wanjiun Liao),蘇炫榮(Hsuan-Jung Su),葉丙成(Ping-Cheng Yeh),魏宏宇(Hung-Yu Wei)
dc.subject.keyword超微型基地台,低負載模式,zh_TW
dc.subject.keywordFemtocell,Low duty operation mode,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved