請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Bor-Hong Chen | en |
| dc.contributor.author | 陳柏宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:43:41Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 戶刈義次 (1963) 作物學試驗法。東京農業技術學會印行: 159-176
Agarwal P K, Agarwal P, Reddy M K and Sopory S K (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263-1274 Alderson A, Sabelli P A, Dickinson, J R, Cole D, Richardson M, Kreis M, Shewry P R and Halford N G (1991) Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. USA 88: 8602-8605 Anderberg R J and Walker-Simmons M K(1992) Plant Biology Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc. Nati. Acad. Sci. USA 89: 10183-10187 Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55: 373-399 Ashraf M and Harris P J C(2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16 Baena-Gonza´lez E and Sheen J (2008) Convergent energy and stress Signaling. Trends in Plant Sci. 13: 274-482 Boudsocq M, Brygoo H B and Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279: 41758-41766 Celenza J L and Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175-1180 Chu C, Lee T M and Lur H S (1995) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant, Cell & Environ. 16: 481- 490 Diédhiou C J, Popova O V, Dietz K J and Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress- responsive gene expression in rice. BMC Plant Biol. 8: 1-13 Finkelstein R R, Gampala S and Rock C D (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45 Fujii H, Verslues P E and Zhu J K (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485–494 Furihata T, Maruyama K, Fujita Y, Mezawa T, Yoshida R, Shinozaki K and Yamaguchi-Shinozaki K (2006) Abscisic acid dependent multisite phosphorylation regaultes the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA 103: 1988-1993 Galiba G, Bálint A F, Vágújfalvi A, Szira F, Börner A, Cattivelli L and Dubcovsky (2007) QTLs and genes for abiotic stress tolerance in cereals: Their general role in the environmental adaptation and their developmental-stage specificity. Options Méditerranéennes 81: 197-200 Gong D, Zhang C, Chen X, Gong Z and Zhu J K (2002) Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. J. Biol. Chem. 277: 42088-42096 Guo Y, Xiong L, Song, C P, Gong D, Halfter U and Zhu J K (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell 3: 233-244 Halford N G and Hardie D G (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol. Biol. 37: 735–748 Halford N G and Hey S J (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem. J. 419: 247–259 Halford N G, Hey S, Jhurreea D, Laurie S, McKibbin R S, Paul M and Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1 related (SnRK1) protein kinase. J. Exp. Bot. 54: 467-475 Halfter U, Ishitani M and Zhu J K (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740 Hardie D G (1999) Plant Protein Serine/Threonine Kinases: classification and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 97-131 Hardie D G (2007) AMP-activated /SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8: 774-785 Holappa L D, Walker-Simmons M K, Ho T H D, Riechers D E, Beckles D M and Jones R L (2005) A Triticum tauschii protein kinase related to wheat PKABA1 is associated with ABA signaling and is distributed between the nucleus and cytosol. J. Cereal Sci. 41: 333–346 Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford, N G, Kudla J, Luan S, Nimmo H G and Sussman M R (2003) Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol. Biol. 31: 405-412 Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla N, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, and Harmon A C (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132: 666–680 Huai J, Wang M, Zheng J H, Dong T, Lv H, Zhao J and Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep. 27:1861–1868 Ikeda Y, Koizumi N, Kusano T and Sano H (1999) Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol. 121: 813-820 Ingram J and Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403 Kagaya Y, Hobo T, Murata M, Ban A and Hattori T (2002) Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14: 3177-3189 Kim K N, Cheong Y H, Grant J J, Pandey G K and Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15: 411-423 Kimura T, Shibagaki N, Ohkama-Ohtsu N, Hayashi H, Yoneyama T, Davies J P and Fujiwara T (2006). Arabidopsis SNRK2.3 protein kinase is involved in the regulation of sulfur-responsive gene expression and Oacetyl- L-serine accumulation under limited sulfur supply. Soil Sci. Plant Nutri. 52: 211-220 Kobayashi Y, Yamamoto S, Minami H, Kagaya Y and Hattori T (2004) Differential activation of the rice sucrose non-fermenting1–related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell 16: 1163–1177 Kobayashi Y, Murata M, Minami H, Yamamoto S, KagayaY, Hobo A, Yamamoto A and Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 44: 939–949 Laurie S, McKibbin R S and Halford N G (2003) Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos. J. Exp. Bot. 54: 739-747 Leung J and Giraduat J (1998) Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222 Liu J P, Ishitani M, Halfer U, Kim C S and Zhu J K (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97: 3730-3734 Mao X, Zhang M, Tian S, Chang X and Jing R (2009) TaSnRK2.4, a SNF1-type serine-threonine protein kinase of wheat (Triticum aestivum L.) confers enhanced multi-stress tolerance in Arabidopsis. J. Exp. Bot. 61: 683–696 Mattoo A K, Shukla V and Autar K (2008) Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol. Mol. Biol. Plants 1: 91-100 Milborrow B V (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis J. Exp. Bot. 52: 1145-1164 Mezawa T, Yoshida R, Maruyama K, Yamaguchi- Shinozaki K and Shinozaki K (2004) SRK2C, a SNF1- related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101: 17306-17311 Mustilli A C, Merlot S, Vavasseur A, Fenzi F and Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089-3099 Purcell P C, Smith A M and Halford N G (1998) Antisence expression of a sucrose non-fermenting 1 related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose inducibility of sucrose synthase transcripts in leaves. Plant J. 14: 195-202 Quansheng Q, Zezhou W, Qigui C and Rongxi C(2002) Changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress. Sci. in China Series C: Life Sci. 45: 1-9 Sano H and Youssefian S (1994) Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc. Natl. Acad. Sci.USA 91: 2582-2586 Schachtman D P, Shin R, Alvarez S, Burch A Y and Jez J M (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose non-fermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc. Natl. Acad. Sci.USA 104: 6460–6465 Shinozaki Y K and Shinozaki K(2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57: 781-803 Shinozaki K, Yamaguchi-Shinozaki K and Seki M(2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-407 Shinozaki K and Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221-227 Stanca A M, Cattivelli L, Baldi P, Crosatti C, Fonzo N D, Faccioli P, Grossi M, Mastrangelo A M and Pecchioni N (2002)Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48: 649-665 Thomas M and Polge C (2006) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends in Plant Sci. 12 : 20-28 Verslues P E and Zhu J K (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Society Transactions 33: 375–379 Vinocur B and Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. in Biotech. 16: 123–132 Wasilewsk A, Vla F, Sirichandr C, Redko Y, Jammes F, Valon C, Frey N F. and Leung J (2008) An update on abscisic acid signaling in plants and more . . . Mole. Plant 1: 198–217 Waugh A R, Rostoks N, Mudie S, Cardle L, Russell J, Ramsay A L, Booth A, Wanamaker S, Walia H, Rodriguez E M, HedleyP E, Liu H, Morris J, Close T J and Marshall D F (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Gen. Genomics 274: 515-527 Wilkinson S and Davies W J (2002) ABA-based chemical signaling: the coordination of responses to stress in plants. Plant Cell Environ. 25: 195-210 Yoon I S, Chae M J, Lee J S, Nam M H Cho K, Hong J Y, Yi S A and Suh S C (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63:151–169 Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R and Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43: 1473-1483 Yoshida M, Mezawa T, Mizoguchi T, Takahashi S, Takahashi F and Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310–5318 Zhang Y, Shewry P R, Jones H, Barcelo P, Lazzeri P A and Halford N G (2001) Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J. 28: 431-441 Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L and An L (2006) Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem. 44: 274-283 Zhu J K (2001) Plant salt tolerance. Trends in Plant Sci. 6: 66-70 Zhu J K (2003) Regulation of ion homeostasis under salt stress. Curr. Opin. in Plant Biol. 6: 441–445 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46939 | - |
| dc.description.abstract | 非生物性逆境對於植物的生長發育與產量品質影響甚鉅,所以探討植物的非生物逆境耐受性之分子機制相當重要。在逆境下植物會伴隨著ABA的生合成,並改變內生基因及代謝物之表現。SnRK2 (Sucrose Non-fermenting 1 Related protein Kinase 2) 是在植物中特有之蛋白磷酸激酶並且會參與在ABA及逆境訊息途徑。在水稻中有10種OsSAPK (Stress Activated Protein Kinase),本論文針對OsSAPK6在逆境下探討其基因表現,並利用Tos17 OsSAPK6突變株進行生理與分子鑑定分析,以了解OsSAPK6基因於水稻之功能。
首先利用生物資訊的方式分析阿拉伯芥及水稻不同SnRK2之親緣關係,並利用PLACE軟體分析OsSAPK6之1.5kb啟動子順式序列,可確認CRT (C-repeat binding element)、ABRE (ABA-responsive element)、WRKY等DNA結合順式序列,表示OsSAPK6之表現可能會受到逆境誘導或抑制。為瞭解OsSAPK6於逆境下之基因表現,首先利用TNG67處理鹽、乾旱、高溫、低溫等逆境,發現OsSAPK6可受到鹽及乾旱逆境下之誘導。本論文乃針對此兩種逆境進行分析。在不同水稻發育部位與時期,發現OsSAPK6於葉身表現量較高。另外為了比較不同水稻品種(梗/秈)間的差異性,將TCN1(秈稻)以鹽與乾旱處理結果發現OsSAPK6的表現量會較TNG67(梗稻)為低。此外為瞭解OsSAPK6在水稻在逆境下所扮演的角色,本試驗亦比較了日本晴(Nipponbare)及Tos17 OsSAPK6突變株於鹽及乾旱逆境下之外表型及其基因表現。也進一步探討OsSAPK6對於水稻鹽及乾旱耐受性之可能分子機制,偵測Tos17突變株在鹽與乾旱逆境處理下之轉錄因子DREB1A及DREB2A、下游逆境相關基因DHN1及SalT的基因表現。結果顯示四種基因表現相較於WT為低,表示OsSAPK6為一參與水稻鹽及乾旱逆境耐受性之正向調控因子。最後為了解OsSAPK6基因之啟動子活性,將pSAPK6::GUS利用基因槍擊發至水稻胚誘導之癒傷組織上,結果顯示GUS染色有所反應,表示此1.5bk之OsSAPK6啟動子片段為一具功能性之啟動子序列。而為確定OsSAPK6之次細胞表現位置,將OsSAPK6::GFP利用基因鎗將載體擊發至洋蔥表皮細胞上,觀察結果發現OsSAPK6會專一性表現在細胞核中。上述研究結果顯示,OsSAPK6可能參與在水稻鹽及乾旱逆境反應途徑,調控下游轉錄因子,影響逆境反應相關之基因表現,進而影響植株之外表型。 | zh_TW |
| dc.description.abstract | Abiotic stress can greatly affect plant growth and production, so it is important to identify the mechanism of abiotic stress tolerance. When plant encounter abiotic stress, plant accumulate ABA and reprogram gene and metabolites expression. SnRK2 (Sucrose Non-fermenting 1 Related protein Kinase 2) are specific present in plant and regulate ABA and abiotic stress signaling pathway. There are 10 OsSAPKs (Stress Activated Protein Kinase) in Oryza sativa L. In this study, we focus on OsSAPK6 to study the gene expression pattern under various abiotic stresses. We also use Tos17 OsSAPK6 knock-out mutant to dissect possible function of OsSAPK6 gene.
At first, we took bioinformatic approach to examine SnRK2 phylogenetic relationship from Arabidopsis and rice then use PLACE to find the putative cis-acting elements in promoter of OsSAPK6 gene. Different cis-acting elements, such as CRT, ABRE and WRKY binding site can be identified in the OsSAPK6 promoter region and indicated that OsSAPK6 expression may be induced under abiotic stress. Using RT-PCR and cDNA from TNG67 treated with salt, drought, high and low temperature, we found that OsSAPK6 expression can be induced by salt and drought stress. Next we monitored the OsSAPK6 expression in different developmental stages and tissues. OsSAPK6 gene was highly expressed in leaf blade. To monitor OsSAPK6 expression in different rice cultivars, we confirmed that OsSAPK6 gene expression was lower in TCN1 than TNG67 under salt and drought stress. Furthermore, to understand function of OsSAPK6 in various stress responses of rice, Tos17 mutants from RGRC were treated by salt and drought stress and the phenotypes and OsSAPK6 gene expression were compared with wild type. Also, to reveal role of OsSAPK6 in the molecular mechanism of stress response, we determined genes expression of two transcription factors (DREB1A & DREB2A) and two down stream stress response genes (DHN1 & SalT) in WT and Tos17 mutants . The expression of DREB1A, DREB2A, DHN1 and SalT was down-regulated in Tos17 mutants as compared with WT. Finally, to analysis the OsSAPK6 promoter activity, we made pSAPK6::GUS plasmid construct and transformed into rice callus. The GUS staining showed blue color on callus and indicated that the 1.5kb DNA fragment of OsSAPK6 promoter is functional. To address the subcellular localization of OsSAPK6 protein, the OsSAPK6::GFP plasmid was particle bombarded to onion epidermis cells and we observed that OsSAPK6 was specifically localized in nucleus. Above all, these results suggested that OsSAPK6 is a positive regulator that involve in the upstream of salt and drought stress tolerance in rice. OsSAPK6 can regulate expression of transcription factors and downstream stress response gene such as DREB1A, DREB2A, DHN1,SalT and affects rice salt and drought stress tolerance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:43:41Z (GMT). No. of bitstreams: 1 ntu-99-R94621116-1.pdf: 3145502 bytes, checksum: 9e6322cefa498b1a04352c43eee4d5a0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 圖表與附錄 V
中文摘要 VII 英文摘要 IX 縮寫與對照表 XI 第一章 前言 1. 植物對於乾旱及鹽逆境之生理反應與機制 1 2. 植物賀爾蒙離層酸(ABA)與逆境之關係 3 3. 蛋白激酶於植物逆境所扮演之功能 4 4. SnRK激酶之種類與介紹 5 5. SnRK2的傳遞方式及其組成 7 6. SnRK2於植物非生物性逆境耐受性之可能作用模式 8 7. 研究目的及實驗架構 8 第二章 材料與方法 1. 試驗材料 11 1.1 水稻種子來源 11 1.2 基因與水稻突變株來源 11 2. 水稻發芽及非生物性逆境處理 11 2.1 水稻種子催芽 11 2.2低溫、高溫、ABA、乾旱及高鹽逆境之處理 12 3. OsSAPK6基因啟動子序列分析、胺基酸比對及演化樹之比較 12 4. 水稻突變株之分子鑑定 12 4.1 Genomic DNA萃取 12 4.2 PCR-based genotyping 分析 13 4.3 水稻RNA抽取與製備 13 4.4反轉錄反應 14 4.5半定量反轉錄聚合酶連鎖反應(RT-PCR) 14 4.6及時定量聚合酶連鎖反應(Real-time PCR) 14 4.7數據統計分析 14 5. 啟動子活性分析及蛋白質次細胞定位 15 5.1大腸桿菌質粒DNA小量純化法 15 5.2大腸桿菌質粒DNA大量純化法 15 5.3熱休克轉型法之大腸桿菌勝任細胞製備 16 5.4質粒的大腸桿菌轉型 16 5.5載體或嵌入DNA片段的製備與回收 16 5.6黏接反應 17 5.7 pOsSAPK6::GUS及OsSAPK6::GFP質體之建構 17 6. 次細胞位置表現分析 17 6.1鎢粒子的包裹 18 6.2基因槍之使用 18 7. GUS染色分析法 19 第三章 結果 1. OsSAPK6之基因分析 20 1.1 OsSAPK6基因結構、啟動子順式、胺基酸序列比對分析 20 1.2 不同非生物性逆境下OsSAPK6基因表現 20 1.3 不同組織及發育時期之OsSAPK6基因表現 21 1.4 不同品種之水稻於逆境下OsSAPK6基因表現分析 21 2. Tos17 OsSAPK6基因剔除突變株之分析 22 2.1 Tos17 OsSAPK6突變株之基因定型分析 22 2.2 Tos17 OsSAPK6突變株種子發芽率測定 22 2.3 Tos17 OsSAPK6突變株之型態分析 22 2.4 Tos17 OsSAPK6突變株中之OsSAPK6基因表現分析 23 2.5 Tos17 OsSAPK6突變株與WT於逆境下OsSAPK6基因 表現分析 23 2.6 Tos17 OsSAPK6突變株於乾旱及鹽逆境相關基因表現分析 23 3. OsSAPK6基因之啟動子活性分析及蛋白質細胞表現定位 23 3.1 以暫時性表現分析pOsSAPK6::GUS之活性變化 24 3.2 OsSAPK6基因之次細胞定位分析 24 第四章 討論 1. 本篇研究與前人研究的差異 25 2. OsSAPK對於水稻逆境耐受性之影響 25 3. Tos17 剔除OsSAPK6突變對於水稻種子萌芽之影響 26 4. Tos17 剔除OsSAPK6突變對於水稻抗逆境之影響 27 5. OsSAPK6於水稻鹽及乾旱逆境下之可能作用模式 27 6. 未來之工作與展望 28 第五章 參考文獻 29 圖表與附錄 圖1. 論文試驗架構之流程圖 9 圖2.(a) 水稻不同OsSAPK6基因之胺基酸序列比對及(b) 水稻與阿拉伯芥 之SnRK演化樹比較分析 35 圖3. (a) OsSAPK6基因結構分析與(b) OsSAPK6轉譯起始點前1.5kb之啟動子 順式作用DNA序列分析 36 圖4. 不同非生物性逆境下(a) 4 hr及(b) 24hr處理下,TNG67地上部/地下部 OsSAPK6基因表現 37 圖5. (a) 不同組織及(b) 發育時期中TNG67 OsSAPK6基因之表現 38 圖6. TNG67與TCN1於250 mM NaCl及drought處理下,(a) 地上部與(b) 地下部之OsSAPK6基因表現分析 39 圖7. (a) OsSAPK6突變株之Tos17插入位點圖示及(b) PCR-genotyping 決定 Tos17突變株之基因型 40 圖8. TNG67、TCN1及Tos17突變株之種子發芽率統計 41 圖9. Tos17 OsSAPK6突變株與WT於(a) 250 mM NaCl及(b) drought處理24 hr 後之外表形態 42 圖10. TNG67、TCN1、Nipponbare及Tos17突變株之地上部/地下部OsSAPK6 基因表現分析 43 圖11. Nipponbare與Tos17突變株於(a) 250 mM NaCl及(b) drought處理0、 4、24 hr下地上部/地下部之OsSAPK6基因表現分析 44 圖12. Tos17突變株於(a) 250 mM NaCl及(b) drought 處理0、4、24hr下之 不同基因基因表現分析 45 圖13.暫時性基因表現OsSAPK6::GUS活性分析之載體建構流程 46 圖14. 暫時性基因表現OsSAPK6::GUS之活性分析 47 圖15. OsSAPK6蛋白質次細胞分析之載體建構流程 48 圖16. OsSAPK6之蛋白質次細胞定位分析 49 圖17. OsSAPK6於植物遭受逆境下可能之作用模式圖 50 附圖1. (a) 非生物性逆境之訊息傳遞途徑之簡述與(b) 基因訊息傳遞網絡 51 附圖2. SnRK2對於高滲透壓逆境及鹽逆境下訊息傳遞之可能作用模式 52 附表1. 阿拉伯芥SnRK2基因家族總表 53 附表2. 水稻SAPK基因家族總表整理 54 附表3. 構築表現載體與偵測基因表現所使用之引子與其PCR擴增片段之長度 55 附錄1 Kimura solution 配方 56 附錄2 各培養試劑配方 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | 蛋白磷酸激酶 | zh_TW |
| dc.subject | 蛋白質定位 | zh_TW |
| dc.subject | 啟動子活性分析 | zh_TW |
| dc.subject | 乾旱及鹽逆境 | zh_TW |
| dc.subject | OsSAPK6 | zh_TW |
| dc.subject | protein kinase OsSAPK6 | en |
| dc.subject | protein subcellular localization | en |
| dc.subject | promoter activity analysis | en |
| dc.subject | salt and drought stress | en |
| dc.subject | gene expression | en |
| dc.title | 水稻OsSAPK6/OSRK1基因之分子鑑定與生理功能分析 | zh_TW |
| dc.title | Molecular Characterization and Physiological Function Analysis of OsSAPK6/OSRK1 Gene in Rice (Oryza sativa L.) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑珍(Shu-Jen Wang),洪傳揚(Chwan-Yang Hong),黃文理(Wen-Lii Huang) | |
| dc.subject.keyword | 蛋白磷酸激酶,OsSAPK6,基因表現,乾旱及鹽逆境,啟動子活性分析,蛋白質定位, | zh_TW |
| dc.subject.keyword | protein kinase OsSAPK6,gene expression,salt and drought stress,promoter activity analysis,protein subcellular localization, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
