Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒(Ben-Zu Wan)
dc.contributor.authorKai-Hui Liangen
dc.contributor.author梁凱惠zh_TW
dc.date.accessioned2021-06-15T05:43:12Z-
dc.date.available2013-08-24
dc.date.copyright2010-08-24
dc.date.issued2010
dc.date.submitted2010-08-20
dc.identifier.citation1. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C. Chemistry Letters, 1987(2): p. 405-408.
2. G.C. Bond and D.T. Thompson, Catalysis by gold. Catalysis Reviews-Science and Engineering, 1999. 41(3-4): p. 319-388.
3. G.C. Bond and D.T. Thompson, Gold-catalysed oxidation of carbon monoxide. Gold Bulletin, 2000. 33(2): p. 41-51.
4. G.J. Hutchings and M.S. Scurrell, Designing oxidation catalysts - Are we getting better? Cattech, 2003. 7(3): p. 90-103.
5. P.A. Sermon, G.C. Bond, and P.B. Wells, Hydrogenation of alkenes over supported gold. Journal of the Chemical Society-Faraday Transactions I, 1979. 75: p. 385-394.
6. J.E. Bailie and G.J. Hutchings, Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chemical Communications, 1999(21): p. 2151-2152.
7. G.J. Hutchings, Vapor-phase hydrochlorination of acetylene - correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 1985. 96(1): p. 292-295.
8. E. Gross, M. Asscher, M. Lundwall, and D.W. Goodman, Gold nanoclusters deposited on SiO2 via water as buffer layer: CO-IRAS and TPD characterization. Journal of Physical Chemistry C, 2007. 111(44): p. 16197-16201.
9. R. Zanella, C. Louis, S. Giorgio, and R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism. Journal of Catalysis, 2004. 223(2): p. 328-339.
10. F. Moreau, G.C. Bond, and A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. Journal of Catalysis, 2005. 231(1): p. 105-114.
11. W.Y. Yu, C.P. Yang, J.N. Lin, C.N. Kuo, and B.Z. Wan, Preparation of Au/TiO2 for catalytic preferential oxidation of CO under a hydrogen rich atmosphere at around room temperature. Chemical Communications, 2005(3): p. 354-356.
12. F. Moreau and G.C. Bond, Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Applied Catalysis A-General, 2006. 302(1): p. 110-117.
13. R. Zanella and C. Louis, Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catalysis Today, 2005. 107-08: p. 768-777.
14. D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, and A. Travlos, Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catalysis Today, 2002. 72(1-2): p. 51-57.
15. F. Romero-Sarria, A. Penkova, L.M. Martinez, M.A. Centeno, K. Hadjiivanov, and J.A. Odriozola, Role of water in the CO oxidation reaction on Au/CeO2: Modification of the surface properties. Applied Catalysis B-Environmental, 2008. 84(1-2): p. 119-124.
16. F. Romero-Sarria, L.M. Martinez, M.A. Centeno, and J.A. Odriozola, Surface dynamics of Au/CeO2 catalysts during CO oxidation. Journal of Physical Chemistry C, 2007. 111(39): p. 14469-14475.
17. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, and B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on TiO2, Alpha-Fe2O3, and Co3O4. Journal of Catalysis, 1993. 144(1): p. 175-192.
18. D. Andreeva, T. Tabakova, V. Idakiev, P. Christov, and R. Giovanoli, Au/alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation. Applied Catalysis A-General, 1998. 169(1): p. 9-14.
19. N.M. Gupta and A.K. Tripathi, The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 catalyst. Gold Bulletin, 2001. 34(4): p. 120-128.
20. H.H. Kung, M.C. Kung, and C.K. Costello, Supported Au catalysts for low temperature CO oxidation. Journal of Catalysis, 2003. 216(1-2): p. 425-432.
21. H.H. Kung, J. Oh, O. Kirichenko, J. Lee, C. Cheung, and M.C. Kung, Supported Au catalysts for the selective reduction of CO in H-2. Abstracts of Papers of the American Chemical Society, 2000. 219: p. U533-U533.
22. M.C. Kung, J.H. Lee, A. ChuKung, and H.H. Kung, Selective reduction of NOx by propene over Au/gamma-Al2O3 catalysts. 11th International Congress on Catalysis - 40th Anniversary, Pts a and B, 1996. 101: p. 701-710.
23. M.C. Kung, J.H. Lee, J. Brooks, and H.H. Kung, Lean Nox Reduction over Au/Al2O3. Abstracts of Papers of the American Chemical Society, 1995. 210: p. 144-FUEL.
24. Y.L. Hao and B.C. Gates, Activation of dimethyl gold complexes on MgO for CO oxidation: Removal of methyl ligands and formation of catalytically active gold clusters. Journal of Catalysis, 2009. 263(1): p. 83-91.
25. Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knozinger, and B.C. Gates, CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation. Journal of Catalysis, 2009. 261(2): p. 137-149.
26. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, and B.Z. Wan, Preparation of nano-gold in zeolites for CO oxidation: Effects of structures and number of ion exchange sites of zeolites. Applied Catalysis A-General, 2005. 291(1-2): p. 162-169.
27. J.N. Lin and B.Z. Wan, Effects of preparation conditions on gold/Y-type zeolite for CO oxidation. Applied Catalysis B-Environmental, 2003. 41(1-2): p. 83-95.
28. J.N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang, and B.Z. Wan, Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation. Applied Catalysis B-Environmental, 2002. 36(1): p. 19-29.
29. S. Tsubota, D.A.H. Cunningham, Y. Bando, and M. Haruta, Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO. Preparation of Catalysts VI, 1995. 91: p. 227-235.
30. J.D. Grunwaldt and A. Baiker, Gold/titania interfaces and their role in carbon monoxide oxidation. Journal of Physical Chemistry B, 1999. 103(6): p. 1002-1012.
31. M.A. Bollinger and M.A. Vannice, A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts. Applied Catalysis B-Environmental, 1996. 8(4): p. 417-443.
32. M.S. Chen and D.W. Goodman, The structure of catalytically active gold on titania. Science, 2004. 306(5694): p. 252-255.
33. C.N. Kuo, H.F. Chen, J.N. Lin, and B.Z. Wan, Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air. Catalysis Today, 2007. 122(3-4): p. 270-276.
34. C. Mihut, C. Descorme, D. Duprez, and M.D. Amiridis, Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts. Journal of Catalysis, 2002. 212(2): p. 125-135.
35. Q. Xu, K.C.C. Kharas, and A.K. Datye, The preparation of highly dispersed Au/Al2O3 by aqueous impregnation. Catalysis Letters, 2003. 85(3): p. 229-235.
36. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989. 115(2): p. 301-309.
37. G.C. Bond and D.T. Thompson, Catalysis by gold. Catalysis Reviews: Science and Engineering, 1999. 41(3): p. 319-388.
38. J.W. Geus, P.G. G. Poncelet, and P.A. Jacobs, Production and Thermal Pretreatmewt of Supported Catalysts, in Studies in Surface Science and Catalysis. 1983, Elsevier. p. 1-33.
39. S. Carabineiro and D. Thompson, Catalytic applications for gold nanotechnology, in Nanocatalysis. 2007. p. 377-489.
40. M. Haruta, Size- and support-dependency in the catalysis of gold. Catalysis Today, 1997. 36(1): p. 153-166.
41. D. Wang, Z. Hao, D. Cheng, X. Shi, and C. Hu, Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 2003. 200(1-2): p. 229-238.
42. M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides. Cattech, 2002. 6(3): p. 102-115.
43. J. Steyn, G. Pattrick, M.S. Scurrell, D. Hildebrandt, M.C. Raphulu, and E. van der Lingen, On-line deactivation of Au/TiO2 for CO oxidation in H-2-rich gas streams. Catalysis Today, 2007. 122(3-4): p. 254-259.
44. M. Azar, V. Caps, F. Morfin, J.L. Rousset, A. Piednoir, J.C. Bertolini, and L. Piccolo, Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation. Journal of Catalysis, 2006. 239(2): p. 307-312.
45. M.M. Schubert, A. Venugopal, M.J. Kahlich, V. Plzak, and R.J. Behm, Influence of H2O and CO2 on the selective CO oxidation in H-2-rich gases over Au/alpha-Fe2O3. Journal of Catalysis, 2004. 222(1): p. 32-40.
46. M.M. Schubert, V. Plzak, J. Garche, and R.J. Behm, Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H-2-rich gas. Catalysis Letters, 2001. 76(3-4): p. 143-150.
47. T. Akita, P. Lu, S. Ichikawa, K. Tanaka, and M. Haruta, Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surface and Interface Analysis, 2001. 31(2): p. 73-78.
48. M. Date, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, and A. Haruta, Performance of Au/TiO2 catalyst under ambient conditions. Catalysis Today, 2002. 72(1-2): p. 89-94.
49. B. Schumacher, V. Plzak, M. Kinne, and R.J. Behm, Highly active Au/TiO2 catalysts for low-temperature CO oxidation: preparation, conditioning and stability. Catalysis Letters, 2003. 89(1-2): p. 109-114.
50. W.S. Lee, B.Z. Wan, C.N. Kuo, W.C. Lee, and S. Cheng, Maintaining catalytic activity of Au/TiO2 during the storage at room temperature. Catalysis Communications, 2007. 8(11): p. 1604-1608.
51. Y. Wu, K.Q. Sun, J. Yu, and B.Q. Xu, A key to the storage stability of Au/TiO2 catalyst. Physical Chemistry Chemical Physics, 2008. 10(42): p. 6399-6404.
52. K.Y. Ho and K.L. Yeung, Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction. Gold Bulletin, 2007. 40(1): p. 15-30.
53. M. Raphulu, J. McPherson, G. Pattrick, T. Ntho, L. Mokoena, J. Moma, and E. van der Lingen, CO oxidation: Deactivation of Au/TiO2 catalysts during storage. Gold Bulletin, 2009. 42(4): p. 328-336.
54. M. Date, H. Imai, S. Tsubota, and M. Haruta. In situ measurements under flow condition of the CO oxidation over supported gold nanoparticles. 2007: Elsevier Science Bv.
55. M. Date, M. Okumura, S. Tsubota, and M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angewandte Chemie-International Edition, 2004. 43(16): p. 2129-2132.
56. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, and R.J. Behm, CO oxidation over supported gold catalysts-'inert' and 'active' support materials and their role for the oxygen supply during reaction. Journal of Catalysis, 2001. 197(1): p. 113-122.
57. M.C. Raphulu, J. McPherson, E. van der Lingen, J.A. Anderson, and M.S. Scurrell, Investigation of the active site and the mode of Au/TiO2 catalyst deactivation using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Gold Bulletin, 2010. 43(1): p. 21-28.
58. C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung, and H.H. Kung, On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Applied Catalysis A-General, 2003. 243(1): p. 15-24.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46912-
dc.description.abstract為探討Au/TiO2觸媒受到光、容器和真空等儲存條件的影響,觸媒樣品被儲存在室溫中不同條件下,並以0℃一氧化碳氧化反應測試其活性,以及使用AA,H2-TPR,HR-TEM,XPS和FT-IR作為鑑定工具。結果顯示光會使金顆粒聚集而使觸媒活性衰退。Au/TiO2觸媒活性亦會受到儲存容器材質的影響,在玻璃瓶中儲存的觸媒維持很高的活性,而高密度聚乙烯(HDPE)瓶和聚乙烯(PE)夾鍊袋則都會使觸媒活性衰退且造成金的還原,其中又以聚乙烯(PE)夾鏈袋的影響遠為顯著。此外,不論照光與否或容器的改變,儲存在真空中的Au/TiO2觸媒都有極為明顯的衰退。這衰退很可能是由於金與鈦之間的作用力變強所造成,因為真空儲存的觸媒都有明顯較高的金還原溫度、較小的金顆粒以及稍高的金鍵結能(Binding energy)。因此,在本研究中建議最有效儲存Au/TiO2觸媒的方式為將其儲存在大氣下、黑暗中,並使用不會和金觸媒互相作用的容器材質(如:玻璃瓶)。在此儲存條件下,Au/TiO2觸媒可維持長達兩年以上的高活性。zh_TW
dc.description.abstractSeveral Au/TiO2 catalysts were stored in various conditions at room temperature to determine how their catalytic activity was affected by light, container and vacuum during the storage and which might be the best condition for the storage of Au/TiO2 catalysts by conducting CO oxidation at 0℃. The samples were also characterized by H2-TPR, HR-TEM, XPS and FT-IR. The results showed that light might cause decay of the catalytic activity of Au/TiO2 due to gold agglomeration. The activity of Au/TiO2 was also affected by the material of the container. Catalysts stored in glass vials maintained high activity. However, HDPE bottle and PE bag both caused deactivation of catalyst and reduction of gold, and the influence of the latter was far more significant than that of the former. Moreover, the catalytic activity of Au/TiO2 stored under vacuum decayed substantially, regardless of the variations in light and container. The deactivation might be due to stronger interaction between gold and titanium, since the vacuum samples all had higher gold reduction temperature, smaller gold particle size and higher Au binding energy. Hence, the most effective way to store Au/TiO2 catalysts suggested in this study is to store Au/TiO2 catalysts in atmosphere in the dark, and in containers which would not and interact with Au/TiO2 such as glass vials. Under the condition, the catalyst could maintain high activity for at least 2 years.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:43:12Z (GMT). No. of bitstreams: 1
ntu-99-R97524022-1.pdf: 2629604 bytes, checksum: 72b0ed3f8b543622398eadbbd4c80539 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 I
Abstract II
Table of Contents III
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
1.1 Catalyzing CO oxidation by supported gold catalysts 1
1.2 Preparation of gold catalyst 3
1.2.1 Impregnation (IMP) 3
1.2.2 Coprecipation (CP) 4
1.2.3 Deposition-Precipitation (DP) 5
1.3 Deactivation of gold catalyst 8
1.4 Objectives 10
Chapter 2 Experimental 12
2.1 Catalyst preparation 12
2.2 Catalytic reaction 14
2.3 Catalyst characterization 18
2.3.1 Atomic Absorption Spectroscopy (AA) 18
2.3.2 Temperature Programmed Reduction (TPR) 19
2.3.3 Constant Temperature Reduction (CTR) 20
2.3.4 High Resolution Transmission Electron Microscopy (HRTEM) 21
2.3.5 X-Ray Photoelectron Spectroscopy (XPS) 22
2.3.6 Fourier Transform Infrared Spectroscopy (FT-IR) 23
2.4 Storage 25
2.4.1 Types of samples 25
2.4.2 Storage conditions 25
Chapter 3 Results and Discussion 29
3.1 Effect of light 29
3.1.1 Uncalcined samples 29
3.1.2 Calcined samples 38
3.2 Effect of container 41
3.2.1 Uncalcined samples 41
3.2.2 Calcined samples 49
3.3 Effect of vacuum 51
3.3.1 Uncalcined samples 51
3.3.2 Calcined samples 57
Chapter 4 Conclusions 61
References 63
dc.language.isoen
dc.subject活性衰退zh_TW
dc.subject金觸媒zh_TW
dc.subject儲存zh_TW
dc.subjectAu/TiO2en
dc.subjectStorageen
dc.subjectDeactivationen
dc.title儲存環境(光、真空、容器)對Au/TiO2之影響zh_TW
dc.titleEffects of Storage Conditions(light, vacuum and container) on Au/TiO2en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭淑芬(Soofin Cheng),吳紀聖(Chi-Sheng Wu)
dc.subject.keyword金觸媒,儲存,活性衰退,zh_TW
dc.subject.keywordAu/TiO2,Storage,Deactivation,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved