Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46911
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃振康(Chen-Kang Huang)
dc.contributor.authorKu-Wei Tsengen
dc.contributor.author曾固威zh_TW
dc.date.accessioned2021-06-15T05:43:11Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationBaumeist, K.J. and F.F. Simon. 1973. Leidenfrost temperature - its correlation for liquid-metals, cryogens, hydrocarbons, and water. Journal of Heat Transfer-Transactions of the ASME. 95(2): 166-173.
Bayazit, M. and H. Aksoy. 2001. Using wavelets for data generation. Journal of Applied Statistics. 28(2): 157 - 166.
Berenson, P.J. 1961. Transition boiling heat transfer from a horizontal surface. J. Heat Transfer. 83.
Bernardin, J.D. and I. Mudawar. 1999. The Leidenfrost point: Experimental study and assessment of existing models. Journal of Heat Transfer-Transactions of the ASME. 121(4): 894-903.
Bernardin, J.D. and I. Mudawar. 2002. A cavity activation and bubble growth model of the Leidenfrost point. Journal of Heat Transfer-Transactions of the ASME. 124(5): 864-874.
Bernardin, J.D., C.J. Stebbins, and I. Mudawar. 1997. Effects of surface roughness on water droplet impact history and heat transfer regimes. International Journal of Heat and Mass Transfer. 40(1): 73-88.

Chandra, S., M. diMarzo, Y.M. Qiao, and P. Tartarini. 1996. Effect of liguid-solid contact angle on droplet evaporation. Fire Safety Journal. 27(2): 141-158.
Chiang, C.H. and C.C. Cheng. 2004. Detecting rebars and tubes inside concrete slabs using continuous wavelet transform of elastic waves. Journal of Mechanics. 20(4): 297-302.
Cui, Q., S. Chandra, and S. McCahan. 2001. The effect of dissolving gases or solids in water droplets boiling on a hot surface. Journal of Heat Transfer-Transactions of the Asme. 123(4): 719-728.
Daubechies, I., 1992. Ten lectures on wavelets. Philadelphia, Pa.: Society for Industrial and Applied Mathematics.
Gabor, D. 1946. Theory of Communication. J. IEEE. 93: 429-457.
Huang, C.K. and V.P. Carey. 2007. The effects of dissolved salt on the Leidenfrost transition. International Journal of Heat and Mass Transfer. 50(1-2): 269-282.
Huang, J.C. 1990. Noise at inception and collapse of a cavity, Applied Mathematics and Mechanics, no. 8, 773-778.
Incropera and Hewitt, 2004. Fundamentals of heat and mass transfer. 5th ed., 6-8. New York:Wiley.

Jcong, H.J. and Y.S. Jaiig. 2000. Fracture source location in thin plates using the wavelet transform of dispersive waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 47(3): 612-619.
Jeschar, R., H. Kraushaar, and H. Griebel. 1996. Influence of gases dissolved in cooling water on heat transfer during stable film boiling. Steel Research. 67(6): 227-234.
Kim, Y.Y. and E.H. Kim. 2001. Effectiveness of the continuous wavelet transform in the analysis of some dispersive elastic waves. Journal of the Acoustical Society of America. 110(1): 86-94.
Li, Q., J.S. Zheng, A. Tsai, and Q.R. Zhou. 2002. Robust endpoint detection and energy normalization for real-time speech and speaker recognition. Ieee Transactions on Speech and Audio Processing. 10(3): 146-157.
Mallat, S.G. 1989. Theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(7): 674-693.
Mayer, 1992. Wavelets and applications. Berlin: Springer Verlag.
McGonegal, C.A., L.R. Rabiner, and A.E. Rosenberg. 1975. Semiautomatic pitch detector (SAPD). IEEE Transactions on Acoustics, Speech, and Signal Processing. ASSP-23(6): 570-574.
Melhem, H. and H. Kim. 2003. Damage detection in concrete by fourier and wavelet analyses. Journal of Engineering Mechanics. 129(5): 571-577.
Nagai, N. and S. Nishio. 1996. Leidenfrost temperature on an extremely smooth surface. Experimental Thermal and Fluid Science. 12(3): 373-379.
Noll, A.M. 1967. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America. 41(2): 293-309.
Obaidat, M.S., M.A. Suhail, and B. Sadoun. 2001. An intelligent simulation methodology to characterize defects in materials. Information Sciences. 137(1-4): 33-41.
Rao, R.M., A.S. Bopardikar, and T. Boros. 1999. Wavelet Transforms: Introduction to Theory and Applications. Journal of Electronic Imaging. 8(4): 478-478.
Rohsenow, W.M. 1972. Rohsenow pool-boiling correlation. journal of heat transfer. 94(2): 255-&.
Ross, M.J., H.L. Shaffer, A. Cohen, Freudber.R, and H.J. Manley. 1974. Average magnitude difference function pitch extractor. IEEE Transactions on Acoustics Speech and Signal Processing. AS22(5): 353-362.
Schroeder, M.R. 1968. Period histogram and product spectrum: new methods for fundamental-frequency measurement. Journal of the Acoustical Society of America. 43(4): 829-834.
Staszewski, W.J. and G.R. Tomlinson. 1994. Application of the wavelet transform to fault detection in a spur gear. Mechanical Systems and Signal Processing. 8(3): 289-307.
Takamasa, T., T. Hazuku, K. Okamoto, K. Mishima, and M. Furuya. 2005. Radiation method surface activation on Leidenfrost and quenching phenomena. Experimental Thermal and Fluid Science. 29(3): 267-274.
Takata, Y., S. Hidaka, A. Yamashita, and H. Yamamoto. 2004. Evaporation of water drop on a plasma-irradiated hydrophilic surface. International Journal of Heat and Fluid Flow. 25(2): 320-328.
Wang, W.J. and P.D. McFadden. 1995. Application of orthogonal wavelets to early gear damage detection. Mechanical Systems and Signal Processing. 9(5): 497-507.
Wu, J.D. and J.C. Chen. 2006. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines. NDT and E International. 39(4): 304-311.
Zuber, N. 1957. On the correlation of data in nucleate pool boiling from a horizontal surface. Aiche Journal. 3(3): S9-S11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46911-
dc.description.abstract本研究使用時域以及頻域的訊號處理方式分析萊氏實驗液滴碰觸高溫平板的聲響,利用聲響訊號在時域以及頻域上的特徵判斷平板是否已到達萊氏溫度。以往進行萊氏實驗相當耗時且耗費大量人力,當人疲勞時實驗的誤差就會增加,故本實驗第一步是將實驗自動化。系統設備可分為四個部份,分為即時影像辨識、滴定控制、溫度控制以及聲響資訊擷取,使用LabVIEW軟體撰寫程式將四個部份連結在一起搭配硬體實現自動化。在系統的穩定度上使用肉眼與影像辨識做比較,結果顯示肉眼與影像辨識相差最多為3.8秒,並能判斷出相同的萊氏溫度;本實驗加熱表面為不鏽鋼板,選用的流體為水、乙二醇/水(重量百分濃度0%、5%、50%、70%)、異丙醇/水 (莫耳分率0、0.01、0.02)以及正庚烷/乙醇 (莫耳分率0、0.01、0.02)。取得實驗聲響資訊後,以六種訊號處理方式辨識萊氏溫度,分別為最大音量法、總音量法、時間長度法、短時傅立葉轉換法、小波轉換法以及傅立葉轉換法,若判斷結果介於正確萊氏溫度±6oC則判斷成功。汽泡爆炸現象為本研究聲響來源,汽泡爆炸屬於非穩態之聲響,聲響頻帶能量分佈廣且無主要頻帶,因此時域之分析方法對萊氏溫度點之判斷能力較差,其中最有效的方法為第一碰撞時間法,辨識成功率為58%;而頻域的方法較能有效的判斷萊氏溫度點,最有效的方法為小波轉換法,辨識成功率為72%。zh_TW
dc.description.abstractThe purpose of this study is to use the signal processing method of time domain and frequency domain analyzing the acoustic of droplet touching high temperature surface, and use the characteristic of the acoustic signal of time domain and frequency domain to determine if reach Leidenfrost temperature or not. In the past, Leidenfrost experiment usually costs very long time and intensive human power. When a person is fatigue, there will be more errors with experiment data. Therefore, the first step is to make the experiment automatic. We can separate the system equipment into 4 parts, real-time image identification, micro-pump control, surface temperature control and acoustic information recording. By using LabVIEW software, we wrote a program to link these 4 sections to achieve automation. As for the stability of the system, we compared human eye and image identification, the maximum difference is 3.8 seconds to read the same Leidenfrost temperature. We used stainless steel panel as heating surface, and the fluid we used are water, water/ethylene glycol(mass percentage 0%, 5%, 50%, 70%), water/IPA(mole fraction 0, 0.01, 0.02), ethanol /n-heptane (mole fraction 0, 0.01, 0.02). We obtained the acoustic information of the experiment via the automation equipment, and indentified Leidenfrost temperature trough four signal processing methods (the largest volume method, the total volume method, the first collision time method, as well as wavelet transform method). If the result is in between ±6oC of accurate Leidenfrost temperature, we considered it’s a successful identification. The source of the sound in this experiment is from the bubble explosive, therefore, the time domain methods fail to successfully indentify the Leidenfrost temperature. The most successful method of time domain is the first collision time method; it successfully indentified 19 out of 50 sets of experiments. The methods of frequency domain can identify Leidenfrost temperature more effectively, wavelet transform method successfully indentified 36 out of 50 sets of experiments.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:43:11Z (GMT). No. of bitstreams: 1
ntu-99-R96631020-1.pdf: 4529857 bytes, checksum: 9fa5d0ed326df46d88146c8c39b419a2 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
符號彙編 xiii
第一章 前言與研究目的 1
1.1 萊氏實驗 1
1.1.1 沸騰區間 2
1.2 聲響分析 4
1.3 研究動機及目的 5
1.3.1 自動化動機與目的 6
1.3.2 聲響分析 6
第二章 文獻回顧 8
2.1 萊氏現象 8
2.1.1 韋伯數(Weber number) 9
2.1.2 測試表面性質 10
2.2 聲響分析 13
2.2.1 端點判斷 14
2.2.2 音高判斷 15
2.2.3 短時傅立葉轉換(short time Fourier transform) 16
2.2.4 小波轉換(wavelet transform) 16
第三章 實驗設備與方法 20
3.1 實驗設備 20
3.1.1 LabVIEW 程式語言 22
3.1.2 資料擷取模組 23
3.1.3 終端控制模組及相關設備 25
3.1.4 實驗環境設備 26
3.2 實驗方法 37
3.2.1 自動化程式流程及介面 37
3.2.2 自動化萊氏實驗流程 45
3.2.3 聲響訊號前處理 46
3.2.4 聲響分析方法 51
第四章 結果與討論 68
4.1 自動化量測系統穩定度分析 68
4.2 實驗流體 72
4.2.1 乙二醇/水之實驗結果 73
4.2.2 異丙醇/水之實驗結果 75
4.2.3 正庚烷/乙醇之實驗結果 76
4.3 聲響分析 79
4.3.1 穩定聲響訊號與非穩定聲響訊號 79
4.3.2 聲響初探 82
4.3.3 頻域共同特徵 86
4.3.4 汽泡坍塌能量 87
4.3.5 聲響分析方法辨識萊氏溫度 94
第五章 結論與建議 101
5.1 結論 101
5.2 建議 102
參考文獻 103
附錄 108
dc.language.isozh-TW
dc.title萊氏現象之自動化量測與聲響分析zh_TW
dc.titleAutomatic measurement and acoustic analysis of Leidenfrost phenomenonen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫珍理(Chen-li Sun),李允中(Yeun-Chung Lee)
dc.subject.keyword萊氏現象、自動化、訊號處理、頻譜分析,zh_TW
dc.subject.keywordLeidenfrost phenomenon, automation, signal processing, spectrum analsis,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2010-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
4.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved