請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46902完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭貽生(Yi-Sheng Cheng) | |
| dc.contributor.author | Kai-Lun Liu | en |
| dc.contributor.author | 劉凱倫 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:43:02Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 林耀輝(1994)我所了解的甘藷。科學農業 25:357-360
邱宜芳 (2003) 甘藷傷害誘導之蛋白質Ipomoelin 的功能測定。國立台灣大學植 物學研究所碩士論文。 陳玉琪 (2003) 甘藷Ipomoelin 基因之定性及調控。國立台灣大學植物學研究所 博士論文。 賴永昌等 (2005) 台灣農家要覽-農作篇(一)。行政院農業委員會。 李培芬等(2006)台灣的自然資源與生態資料庫.III 農林漁牧。行政院農業委 員會林務局。 Bailey, S. (1994). The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallogr D 50: 760-763. Bandyopadhyay, S., Roy, A., and Das, S. (2001). Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161: 1025-1033. Bauchrowitz, M.A., Barker, D.G., and Truchet, G. (1996). Lectin genes are expressed throughout root nodule development and during nitrogen-fixation in the Rhizobium-Medicago symbiosis. Plant J 9: 31-43. Bouckaert, J., Dewallef, Y., Poortmans, F., Wyns, L., and Loris, R. (2000). The structural features of concanavalin A governing non-proline peptide isomerization. J Biol Chem 275: 19778-19787. Bourne, Y., Zamboni, V., Barre, A., Peumans, W.J., Van Damme, E.J.M., and Rouge, P. (1999). Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure 7: 1473-1482. Bourne, Y., Roig-Zamboni, V., Barre, A., Peumans, W.J., Astoul, C.H., Van Damme, E.J.M., and Rouge, P. (2004). The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a beta-prism fold. J Biol Chem 279: 527-533. Bradford, M.M. (1976). Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72: 248-254. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., and Warren, G.L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905-921. Chen, Y., Peumans, W.J., Hause, B., Bras, J., Kumar, M., Proost, P., Barre, A., Rouge, P., and Van Damme, E.J.M. (2002). Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. Faseb J 16: 905-+. Chen, Y.C., Lin, H.H., and Jeng, S.T. (2008). Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ 31: 62-72. Chen, Y.C., Chang, H.S., Lai, H.M., and Jeng, S.T. (2005). Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant Cell and Environment 28: 251-259. Chen, Y.C., Tseng, B.W., Huang, Y.L., Liu, Y.C., and Jeng, S.T. (2003). Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion and ethylene. Plant Cell and Environment 26: 1373-1383. Chrispeels, M.J., and Raikhel, N.V. (1991). Lectins, Lectin Genes, and Their Role in Plant Defense. Plant Cell 3: 1-9. Claes, B., Dekeyser, R., Villarroel, R., Vandenbulcke, M., Bauw, G., Vanmontagu, M., and Caplan, A. (1990). Characterization of a Rice Gene Showing Organ-Specific Expression in Response to Salt Stress and Drought. Plant Cell 2: 19-27. David, C.K. (2002). Animal lectins: a historical introduction and overview. Biochimica et Biophysica Acta 1572: 187-197. DeLano, W.L. (2002). Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struc Biol 12: 14-20. Dodd, R.B., and Drickamer, K. (2001). Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11: 71r-79r. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D 60: 2126-2132. Hardman, K.D., and Ainswort.Cf. (1972). Myoinositol Binding-Site of Concanavalin A. Nature-New Biol 237: 54-&. Hauri, H.P., Appenzeller, C., Kuhn, F., and Nufer, O. (2000). Lectins and traffic in the secretory pathway. Febs Lett 476: 32-37. Hui, Y., and Czapla, T.H. (1993). Isolation and Characterization of Cdna Clones Encoding Jacalin Isolectins. J Biol Chem 268: 5905-5910. Imanishi, S., Kito-Nakamura, K., Matsuoka, K., Morikami, A., and Nakamura, K. (1997). A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol 38: 643-652. Jeng, S.T., Gardner, J.F., and Gumport, R.I. (1992). Transcription Termination Invitro by Bacteriophage-T7 Rna-Polymerase - the Role of Sequence Elements within and Surrounding a P-Independent Transcription Terminator. J Biol Chem 267: 19306-19312. Jeyaprakash, A.A., Katiyar, S., Swaminathan, C.P., Sekar, K., Surolia, A., and Vijayan, M. (2003). Structural basis of the carbohydrate specificities of jacalin: An X-ray and modeling study. Journal of Molecular Biology 332: 217-228. Jeyaprakash, A.A., Jayashree, G., Mahanta, S.K., Swaminathan, C.P., Sekar, K., Surolia, A., and Vijayan, M. (2005). Structural basis for the energetics of jacalin-sugar interactions: Promiscuity versus specificity. Journal of Molecular Biology 347: 181-188. King, B.J., Layzell, D.B., and Canvin, D.T. (1986). The Role of Dark Carbon-Dioxide Fixation in Root-Nodules of Soybean. Plant Physiology 81: 200-205. Laskowski, R.A., Macarthur, M.W., Moss, D.S., and Thornton, J.M. (1993). Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283-291. Loris, R., Hamelryck, T., Bouckaert, J., and Wyns, L. (1998). Legume lectin structure. Bba-Protein Struct M 1383: 9-36. Meagher, J.L., Winter, H.C., Ezell, P., Goldstein, I.J., and Stuckey, J.A. (2005). Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 15: 1033-1042. Nagano, C.S., Calvete, J.J., Barettino, D., Perez, A., Cavada, B.S., and Sanz, L. (2008). Insights into the structural basis of the pH-dependent dimer-tetramer equilibrium through crystallographic analysis of recombinant Diocleinae lectins. Biochem J 409: 417-428. Oliveira, J.T.A., Melo, V.M.M., Camara, M.F.L., Vasconcelos, I.M., Beltramini, L.M., Machado, O.L.T., Gomes, V.M., Pereira, S.P., Fernandes, C.F., Nunes, E.P., Capistrano, G.G.G., and Monteiro-Moreira, A.C.O. (2002). Purification and physicochemical characterization of a cotyledonary lectin from Luetzelburgia auriculata. Phytochemistry 61: 301-310. Peumans, W.J., and Vandamme, E.J.M. (1995). The Role of Lectins in Plant Defense. Histochem J 27: 253-271. Peumans, W.J., Hause, B., and Van Damme, E.J.M. (2000). The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. Febs Lett 477: 186-192. Powell, K.S., Spence, J., Bharathi, M., Gatehouse, J.A., and Gatehouse, A.M.R. (1998). Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44: 529-539. Rabijns, A., Barre, A., Van Damme, E.J.M., Peumans, W.J., De Ranter, C.J., and Rouge, P. (2005). Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. Febs J 272: 3725-3732. Rao, K.N., Suresh, C.G., Katre, U.V., Gaikwad, S.M., and Khan, M.I. (2004). Two orthorhombic crystal structures of a galactose-specific lectin from Artocarpus hirsuta in complex with methyl-alpha-D-galactose. Acta Crystallogr D 60: 1404-1412. Remy, L. (2002). Principles of structures of animal and plant lectins. Biochimica Et Biophysica Acta 1572: 198-208. Ryan, C.A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. Bba-Protein Struct M 1477: 112-121. Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., and Vijayan, M. (1996). A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol 3: 596-603. Senear, D.F., and Teller, D.C. (1981). Thermodynamics of Concanavalin-a Dimer-Tetramer Self-Association - Sedimentation Equilibrium Studies. Biochemistry 20: 3076-3083. Utarabhand, P., and Akkayanont, P. (1995). Purification of a Lectin from Parkia-Javanica Beans. Phytochemistry 38: 281-285. Van Damme, E.J.M., Peumans, W.J., Barre, A., and Rouge, P. (1998). Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17: 575-692. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46902 | - |
| dc.description.abstract | Ipomoelin (IPO) 是一個甘藷(Ipomoea batatas cv. Tainung 57)中傷害誘導的防禦蛋白,IPO會被機械性傷害、茉莉酸甲酯(Methyl Jasmonate)以及乙烯等多種植物逆境與訊息分子所誘導表現,IPO屬於凝集素家族的一員,可與醣類分子結合的蛋白質之一。為了瞭解IPO與數種親和性高的醣類分子之結合情形,將原態IPO以及IPO與三種不同的醣受質分子:methyl α-D-mannopyranoside (MMP)、methyl α-D-glucopyranoside (MGP)或sialic acid (SA)所形成之複合物進行養晶條件的篩選與晶體的培養,其中IPO與醣類分子所形成之複合物以共結晶的方式進行養晶,拿到蛋白質晶體後,利用新竹國家同步輻射中心進行X光繞射數據收集。繞射數據經過初步的計算之後,發現這些晶體呈現不同的空間群,原態IPO之單位晶格為a=87.5 Å; b=139.5 Å; c=189.9 Å; α=β=γ=90°,空間群為I222。IPO的三維立體結構,利用分子置換法(molecular replacement)並以旋花凝集素(Calespa, pdb id: 1OUW)結構為模板,取得相位角,並進一步計算電子密度圖,建立並修正蛋白質分子結構,解析度為2.3 Å。IPO與醣類所形成之複合物晶體,IPO-MMP空間群為C2221,解析度為2.1 Å;IPO-MGP空間群為P21,解析度為2.1 Å;IPO-SA空間群為P41,解析度為1.9 Å。IPO由14個平行的β摺板,組成一稜柱狀(β-prism)的結構,並以四聚體的形式存在。醣類分子MMP、MGP及SA可以藉由電子雲密度圖清楚的在棱柱狀結構中,遠離N端的結合口袋區發現,由Gly21、Tyr97、Ser140、Gly141、Trp142、Tyr143及Asp145七個胺基酸組成一結合口袋區,其中IPO上的Gly21、Trp142及Asp145三個胺基酸各會與MMP、MGP和SA形成氫鍵。另外,MGP與SA兩者皆會與IPO上的Tyr97及Tyr143形成氫鍵,兩者不同的是,MGP會與Gly141形成氫鍵;SA會與Ser140形成氫鍵,這些結果顯示這些胺基酸可能與醣類分子結合的能力或特異性有關。 | zh_TW |
| dc.description.abstract | Ipomoelin (IPO) is a defense protein from sweet potato (Ipomoea batatas cv. Tainung 57) and will be induced by wounding, methyl jasmonate (MeJA), and ethylene. IPO belongs to Lectin family and it can bind various carbohydrates in different affinities. For investigating the binding modes of IPO for various carbohydrates, the purified proteins of native IPO, IPO in complex with methyl α-D-mannopyranoside (MMP), methyl α-D-glucopyranoside (MGP), sialic acid (SA) were respectively crystallized and resolved. They showed different space group after indexing and scaling. The native IPO is a space group I222 with unit-cell a=87.5 Å, b=139.5 Å, c=189.9 Å, α=β=γ=90º. The structure of native IPO was determined by molecular replacement method in CNS program using Calespa structure (pdb id: 1OUW) as search model. Finally, the crystal structure of IPO was resolved at a resolution 2.3 Å. The following complex structures of IPO with carbohydrates were crystallized in space group C2221 for IPO-MMP at 2.1 Å resolution, P21 for IPO-MGP at 2.1 Å resolution, and P41 for IPO-SA at 1.9 Å resolution, respectively. IPO consists of fourteen strands of β-sheet to form a β-prism structure and functions as tetramer. The carbohydrates MMP, MGP, and SA could be clearly observed in the binding pocket of IPO and contoured by the omitted map. In general, three carbohydrates, MMP, MGP and SA share three hydrogen-bonding interactions with Gly21, Trp142 and Asp145 of IPO. The atoms O3 and O4 of MMP form a network of four hydrogen bonds with IPO. Additionally, MGP and SA share two other hydrogen-bonding interactions with Tyr97 and Tyr143 of IPO. IPO have another hydrogen bond between Gly141 and MGP, and another hydrogen bond between Ser140 and SA. The results from IPO in complex with various carbohydrates will provide the further information of binding specificities in IPO from lower to higher affinity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:43:02Z (GMT). No. of bitstreams: 1 ntu-99-R95b42018-1.pdf: 71088333 bytes, checksum: 12eb1e4b22770b66813a28e9bbe060b3 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 縮寫對照表 3 第一章 前言 一、 甘藷簡介 7 二、 甘藷Ipomoelin簡介 8 三、 凝集素的分類與功能 10 1. 凝集素的結構與分類 10 2. 凝集素的功能 12 四、 研究目的 13 第二章 材料與方法 一、 材料 14 二、 勝任細胞之製備 14 三、 轉形作用 14 四、 IPO蛋白質的表現與純化 14 五、 蛋白質定量 16 六、 聚丙烯醯胺膠體電泳(SDS-polyacrylamide gel electrophoresis; SDS-PAGE) 16 七、 西方墨點法 (Western blotting) 16 八、 蛋白質之結晶實驗 17 1. Pre-crystallization test (PCT測試) 17 2. 原態IPO蛋白質之結晶篩選 17 3. IPO與MMP、MGP或SA之共結晶 17 九、 晶體繞射數據的收集和處理 18 十、 IPO蛋白質與醣受質複合物之結構的決定與精調 18 十一、 膠體過濾色層分析法 18 十二、 分子結構驗證及繪製 19 第三章 結果 一、 IPO與已知結構的蛋白質序列比對結果 20 二、 IPO蛋白質純化結果 20 三、 蛋白質結晶實驗 21 四、 IPO 蛋白質及其與醣受質複合物之結構 21 1. 原態IPO蛋白質結構的決定與精調 21 2. IPO-MMP複合物之結構精調後之結果 22 3. IPO-MGP複合物之結構精調後之結果 23 4. IPO-SA複合物之結構精調後之結果 24 5. IPO及其與各結構間的平均差異值 (Root mean square deviation, RMSD) 26 五、 膠體過濾色層分析結果 26 第四章 討論 一、 IPO與已知結構的凝集素比較分析 28 1. IPO與Jacalin-related凝集素結構比較 28 2. IPO蛋白質序列比對與其醣受質結合區域比較分析 28 二、 IPO及其與醣受質複合物之結構分析 29 1. IPO整體結構探討 29 2. IPO及其與醣受質複合物之結構比較 29 三、 鎘離子與IPO間的關係 30 四、 IPO多元體的組成形式 31 第五章 結論 33 參考文獻 34 圖表 40 附錄 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 凝集素 | zh_TW |
| dc.subject | 蛋白質結構 | zh_TW |
| dc.subject | 晶體 | zh_TW |
| dc.subject | 甘藷 | zh_TW |
| dc.subject | structure | en |
| dc.subject | crystallography | en |
| dc.subject | ipomoelin | en |
| dc.title | Ipomoelin與多種醣類MMP、MGP或唾液酸複合物之結構分析 | zh_TW |
| dc.title | Structural analysis of Ipomoelin in complex with various carbohydrates MMP, MGP and sialic acid revealed its sugar binding properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊榮輝(Rong-Huay Juang),鄭石通(Shih-Tong Jeng),張世宗(Shih-Chung Chang),陳玉琪(Yu-Chi Chen) | |
| dc.subject.keyword | 甘藷,蛋白質結構,晶體,凝集素, | zh_TW |
| dc.subject.keyword | ipomoelin,structure,crystallography, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 69.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
