請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成 | |
| dc.contributor.author | Li-An Chuang | en |
| dc.contributor.author | 莊理安 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:44Z | - |
| dc.date.available | 2016-09-14 | |
| dc.date.copyright | 2011-09-14 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-29 | |
| dc.identifier.citation | [1] A. Broggi, R. L. Fedriga, and A. Tagliati, 'Pedestrian Detection on a Moving Vehicle: an Investigation about Near Infra-Red Images,' in IEEE Intelligent Vehicles Symposium, pp. 431-436, 2006.
[2] 謝鸚爗, 劉威忠, 馮明華, 林招膨, and 林群智, '遠紅外線在不同衣料及組織穿透能力之研究,' Taiwanese Journal of Applied Radiation and Isotopes, vol. 4, 2008. [3] D. Gero′ nimo, A. M. Lo′ pez, A. D. Sappa, and T. Graf, 'Survey of Pedestrian Detection for Advanced Driver Assistance Systems,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1239-1258, 2010. [4] N. Dalal and B. Triggs, 'Histograms of Oriented Gradients for Human Detection,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893 vol. 1, 2005. [5] N. Dalal, B. Triggs, and C. Schmid, 'Human Detection Using Oriented Histograms of Flow and Appearance,' in European Conference on Computer Vision, pp. 428-441, 2006. [6] M. Mahlisch, M. Oberlander, O. Lohlein, D. Gavrila, and W. Ritter, 'A multiple detector approach to low-resolution FIR pedestrian recognition,' in IEEE Intelligent Vehicles Symposium, pp. 325-330, 2005. [7] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, 'Pedestrian Detection using Infrared images and Histograms of Oriented Gradients,' in IEEE Intelligent Vehicles Symposium, pp. 206-212, 2006. [8] L. Zhang, B. Wu, and R. Nevatia, 'Pedestrian Detection in Infrared Images based on Local Shape Features,' in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2007. [9] J. Ge, Y. Luo, and G. Tei, 'Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems,' IEEE Transactions on Intelligent Transportation Systems, vol. 10, pp. 283-298, 2009. [10] E. Binelli, A. Broggi, A. Fascioli, S. Ghidoni, P. Grisleri, T. Graf, and M. Meinecke, 'A modular tracking system for far infrared pedestrian recognition,' in IEEE Intelligent Vehicles Symposium, pp. 759-764, 2005. [11] M. Bertozzi, A. Broggi, A. Lasagni, and M. D. Rose, 'Infrared stereo vision-based pedestrian detection,' in IEEE Intelligent Vehicles Symposium, pp. 24-29, 2005. [12] L. Andreone, F. Bellotti, A. De Gloria, and R. Lauletta, 'SVM-based pedestrian recognition on near-infrared images,' in International Symposium on Image and Signal Processing and Analysis pp. 274-278, 2005. [13] J. Li, W. Gong, J. Yang, and W. Li, 'Intensity-Distance Projection Space Based Human Tracking in Far-Infrared Image Sequences,' in World Congress on Computer Science and Information Engineering, pp. 371-375, 2009. [14] D. M. Gavrila, 'A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 1408-1421, 2007. [15] K. Mikolajczyk, C. Schmid, and A. Zisserman, 'Human Detection Based on a Probabilistic Assembly of Robust Part Detectors,' in European Conference on Computer Vision, pp. 69-82, 2004. [16] A. Mohan, C. Papageorgiou, and T. Poggio, 'Example-based object detection in images by components,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 349-361, 2001. [17] Y.-T. Chen, C.-S. Chen, Y.-P. Hung, and K.-Y. Chang, 'Multi-class multi-instance boosting for part-based human detection,' in IEEE Conference on Computer Vision Workshops, pp. 1177-1184, 2009. [18] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, 'Fast Human Detection Using a Cascade of Histograms of Oriented Gradients,' in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1491-1498, 2006. [19] C.-C. R. Wang and J.-J. Lien, 'AdaBoost Learning for Human Detection Based on Histograms of Oriented Gradients,' in Asian Conference on Computer Vision. vol. 4843, Y. Yagi, et al., Eds., ed: Springer Berlin / Heidelberg, 2007, pp. 885-895. [20] L. Bourdev, S. Maji, T. Brox, and J. Malik, 'Detecting People Using Mutually Consistent Poselet Activations,' in European Conference on Computer Vision, pp. 168-181, 2010. [21] L. Bourdev and J. Malik, 'Poselets: Body part detectors trained using 3D human pose annotations,' in IEEE International Conference on Computer Vision, pp. 1365-1372, 2009. [22] Y.-C. Lin, Y.-M. Chan, L.-C. Chuang, L.-C. Fu, S.-S. Huang, and P.-Y. Hsiao, 'Near-Infrared Based Nighttime Pedestrian Detection by Combining Multiple Features,' in International IEEE Conference on Intelligent Transportation Systems, 2011. [23] P. Sabzmeydani and G. Mori, 'Detecting Pedestrians by Learning Shapelet Features,' in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46886 | - |
| dc.description.abstract | 在智慧型運輸系統中,行人偵測是一個重要的議題,因為行人並非光源體,在夜間黑暗的環境下,駕駛者更不容易注意到行人,使得夜間行人偵測較日間行人偵測更為重要。本論文提出一個在移動式車輛上使用之基於近紅外線影片的夜間行人偵測方法,在近紅外線影像中會顯示輻射近紅外線以及反射經由我們的近紅外線投射燈投出的紅外線的區域。但在某些情況下,行人身上衣物的材質會吸收大部分投射在身上的紅外線,造成這個行人穿著此材質衣物的區域無法在紅外線影像中顯示,這種情況會使基於整體的行人偵測方法失敗,為了解決這類的議題,我們提出了一種基於片段的行人偵測方法。在過去傳統的方法中,若使要解決此類遮蔽的問題需要大量的遮蔽樣本,為了解決這個問題,我們將會學習任兩個片段間的空間關係,因此我們提出了在空間上具有相互關係的區域特徵,對於每個片段擷取此特徵以訓練分類器以及空間關係,藉由空間關係模型,我們不需要蒐集所有的遮蔽樣本,學習了各個片段間的空間關係後,即使遇偵測的行人部分被遮蔽,我們還是可以強化對偵測到的行人片段的信心。 | zh_TW |
| dc.description.abstract | Pedestrian detection is an important issue in the intelligent transportation system field. Since the pedestrian is not an apparent object at nighttime, it is more critical for the vision system to help detecting the pedestrian for assisting driving. Accordingly, this thesis proposes a nighttime pedestrian detection method based on near-infrared video stream on a moving vehicle. The objects in the nighttime environment will radiate infrared or reflect the infrared projected by our emitted spotlight. But in some cases, the clothes on the pedestrian will absorb most of the infrared and makes the pedestrian partially invisible in that part. To deal with this, we propose a part-based pedestrian detection method which divided pedestrian into many parts according to the feature points marked on them. Those human body parts with specific feature point configuration named poselets. For each poselet, a proposed feature named spatially interrelated local feature (SIL feature) is extract for construct the poselet classifier. For the purpose of obtaining an effective detector, the tradition methods need to collect large number of samples with occlusion and thus complicates the training process. To alleviate this problem, the spatial relationship between each two parts is automatically learned by using SIL feature. Additionally, the learned spatial relationship can enhance the confidence of the detected parts even if some parts are occluded. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:44Z (GMT). No. of bitstreams: 1 ntu-100-R98944041-1.pdf: 2395630 bytes, checksum: 5160f1af5f0b1e7ce19f06df704b5e38 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Challenges 3 1.3 Objectives 6 1.4 Related Work 7 1.4.1 Holistic-Based Pedestrian Detection 8 1.4.2 Part-Based Pedestrian Detection 8 1.4.3 Pedestrian Detection by Poselet 10 1.5 Contributions 11 1.6 Thesis Organization 12 Chapter 2 Problem Definition and Preliminaries 13 2.1 Problem Definition 13 2.2 Histogram of Oriented Gradients (HOG) Feature 16 2.2.1 Construction of HOG Feature 16 2.2.2 Human Detection by HOG Classifier 18 2.3 Human Detection by Poselet 19 2.3.1 Human Classifier Composed by Poselet Classifiers 19 2.3.2 Human Detection by Poselet Classifiers 20 2.4 System Overview 21 Chapter 3 Classifier Construction by Spatially Interrelated Local Features 23 3.1 Training Dataset with Keypoints Annotation 24 3.2 Poselet Selection and Training Sample Collection 27 3.3 Poselet Classifier Construction and Spatial Relationship Learning 33 3.3.1 HOG Classifier Construction 33 3.3.2 Location Model Construction 34 3.3.3 Keypoint Distribution Construction 38 3.4 Classifier Improving and Feature Selection 39 3.4.1 Classifier Improving 39 3.4.2 Feature Selection 40 Chapter 4 Nighttime Pedestrian Detection by Spatially Interrelated Local Features 42 4.1 Feature Matching 43 4.1.1 HOG Detection 43 4.1.2 Prediction of Poselet’s Interior Keypoints 45 4.2 Feature Grouping by Their Spatial Relation 46 4.3 Torso and Pedestrian Bounding Box Prediction 48 Chapter 5 Experimental Result 51 5.1 Environment Setting 51 5.2 Video Database and Parameters Setting 52 5.3 Detection Result and Performance 55 5.3.1 Definition of result and performance 55 5.3.2 Detection result 56 Chapter 6 Conclusion 60 References 62 | |
| dc.language.iso | en | |
| dc.subject | 基於片段 | zh_TW |
| dc.subject | 空間關係 | zh_TW |
| dc.subject | 幾何資訊 | zh_TW |
| dc.subject | 近紅外線 | zh_TW |
| dc.subject | 夜間 | zh_TW |
| dc.subject | 行人偵測 | zh_TW |
| dc.subject | spatial relationship | en |
| dc.subject | HOG | en |
| dc.subject | poselet | en |
| dc.subject | part-based | en |
| dc.subject | geometric information | en |
| dc.subject | near-infrared | en |
| dc.subject | nighttime | en |
| dc.subject | pedestrian detection | en |
| dc.title | 使用具空間相互關係的區域特徵模型之部分式夜間行人偵測 | zh_TW |
| dc.title | Part-based Nighttime Pedestrian Detection Using Spatially
Interrelated Local Feature Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蕭培墉 | |
| dc.contributor.oralexamcommittee | 傅楸善,黃世勳,方瓊瑤 | |
| dc.subject.keyword | 行人偵測,夜間,近紅外線,幾何資訊,空間關係,基於片段, | zh_TW |
| dc.subject.keyword | pedestrian detection,nighttime,near-infrared,geometric information,spatial relationship,part-based,poselet,HOG, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
