請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4687完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Yu-Lin Chien | en |
| dc.contributor.author | 簡友琳 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:45:17Z | - |
| dc.date.available | 2017-07-21 | |
| dc.date.available | 2021-05-14T17:45:17Z | - |
| dc.date.copyright | 2015-07-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-17 | |
| dc.identifier.citation | [1] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui Zhang. Developing a predictive model of quality of experience for internet video. In Proceedings of the 2013 ACM Conference on SIGCOMM.
[2] Christopher Müller, Stefan Lederer, and Christian Timmerer. An evaluation of dynamic adaptive streaming over http in vehicular environments. In Proceedings of the 4th Workshop on Mobile Video, 2012. [3] Guibin Tian and Yong Liu. Towards agile and smooth video adaptation in dynamic http streaming. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, 2012. [4] Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang. Qdash: A qoe-aware dash system. In Proceedings of the 3rd Multimedia Systems Conference, 2012. [5] V. Joseph and G. de Veciana. Nova: Qoe-driven optimization of dash-based video delivery in networks. In INFOCOM, 2014 Proceedings IEEE. [6] Thomas Wirth, Yago Sanchez, Bernd Holfeld, and Thomas Schierl. Advanced downlink lte radio resource management for http-streaming. In Proceedings of the 20th ACM International Conference on Multimedia, 2012. [7] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proceedings of the 2014 ACM Conference on SIGCOMM. [8] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. Confused, timid, and unstable: Picking a video streaming rate is hard. In Proceedings of the 2012 ACM Conference on Internet Measurement Conference, 2012. [9] Te-Yuan Huang, Ramesh Johari, and Nick McKeown. Downton abbey without the hiccups: Buffer-based rate adaptation for http video streaming. In Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-centric Multimedia Networking, 2013. [10] Ahmed Hamza and Mohamed Hefeeda. A dash-based free viewpoint video streaming system. In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2014. [11] Zied Aouini, Mamadou Tourad Diallo, Ali Gouta, Anne-Marie Kermarrec, and Yannick Lelouedec. Improving caching efficiency and quality of experience with cfdash. In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2014. [12] Danny H. Lee, Constantine Dovrolis, and Ali C. Begen. Caching in http adaptive streaming: Friend or foe? In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2014. [13] Ali C. Begen Saamer Akhshabi, Lakshmi Anantakrishnan and Constantine Dovrolis. What happens when http adaptive streaming players compete for bandwidth? In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2012. [14] Sajid Nazir, Ziaul Hossain, Raffaello Secchi, Matthew Broadbent, Andreas Petlund, and Gorry Fairhurst. Performance evaluation of congestion window validation for dash transport. In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2014. [15] Feng Wang, Jiangchuan Liu, and Minghua Chen. Calms: Cloud-assisted live media streaming for globalized demands with time/region diversities. In INFOCOM, 2012 Proceedings IEEE. [16] Cong Wang and Michael Zink. On the feasibility of dash streaming in the cloud. In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop, 2014. [17] D. De Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, Gang Li, and R. Miller. Optimization of http adaptive streaming over mobile cellular networks. In INFOCOM, 2013 Proceedings IEEE. [18] R. Bhatia, T.V. Lakshman, A. Netravali, and K. Sabnani. Improving mobile video streaming with link aware scheduling and client caches. In INFOCOM, 2014 Proceedings IEEE. [19] S. Cicalo, N. Changuel, R. Miller, B. Sayadi, and V. Tralli. Quality-fair http adaptive streaming over lte network. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. [20] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer. Equation-based congestion control for unicast applications. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 2000. [21] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic behavior of the tcp congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev., 27(3):67–82, 1997. [22] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp throughput: A simple model and its empirical validation. In Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 1998. [23] Martin Swany and Rich Wolski. Multivariate resource performance forecasting in the network weather service. In Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, 2002. [24] S. Vazhkudai, J.M. Schopf, and I. Foster. Predicting the performance of wide area data transfers. In Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM, 2002. [25] Yin Zhang and Nick Duffield. On the constancy of internet path properties. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, 2001. [26] Qi He, Constantine Dovrolis, and Mostafa Ammar. On the predictability of large transfer tcp throughput. In Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. [27] M. Mirza, J. Sommers, P. Barford, and Xiaojin Zhu. A machine learning approach to tcp throughput prediction. Networking, IEEE/ACM Transactions on, 18(4):1026–1039, 2010. [28] Vengatanathan Krishnamoorthi, Niklas Carlsson, Derek Eager, Anirban Mahanti, and Nahid Shahmehri. Quality-adaptive prefetching for interactive branched video using http-based adaptive streaming. In Proceedings of the ACM International Conference on Multimedia, 2014. [29] Mohammad Ashraful Hoque, Matti Siekkinen, and Jukka K. Nurminen. Using crowd-sourced viewing statistics to save energy in wireless video streaming. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, 2013. [30] Hyunwoo Nam, Kyung Hwa Kim, Bong Ho Kim, D. Calin, and H. Schulzrinne. Towards dynamic qos-aware over-the-top video streaming. In A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th International Symposium on. [31] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. [32] Simone Basso, Antonio Servetti, Enrico Masala, and Juan Carlos De Martin. Measuring dash streaming performance from the end users perspective using neubot. In Proceedings of the 5th ACM Multimedia Systems Conference, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4687 | - |
| dc.description.abstract | Dynamic Adaptive Streaming over HTTP (DASH) 於現在已經成為一
個越來越重要的應用。影響HTTP 上串流影音品質最重要的關鍵,就 在於如何選擇適當的影片速率調節機制。之前的一些相關論文提出 一些可以根據目前網路狀態的變化,來動態調整下載影片速率的方 法;但是會影響到影片速率選擇的因素有許多種,而這些方法一般都 只考慮其中少數的幾個重要因素,像是預測的頻寬或是目前緩衝影 片的長度。但是頻寬預測不僅相當困難,同時容易有很大誤差可能, 而這導致了其可能嚴重影響到速率選擇的效果。為了解決這個問題, 我們提出了於HTTP 上基於機器學習的速率調節機制(MLASH)。利 用classification 的方法,MLASH 不僅可以有彈性的將所有可能影響 到速率調節的因素都考慮進來,還可以避開頻寬預測的困難。同時, MLASH 還可以與之前的其他速率調節方法進行整合,並且利用大數 據的特性,來進一步提升速率調節之效果。我們根據原始資料來進行 模擬實驗,以證明我們的方法不僅效果良好,同時於不同的使用者體 驗衡量標準上,表現也比之前其他的速率調節方法更加優秀。 | zh_TW |
| dc.description.abstract | Dynamic Adaptive Streaming over HTTP (DASH) has become an emerging
application nowadays. Video rate adaptation is a key to determine the video quality of HTTP-based media streaming. Recent works have proposed several algorithms that allow a DASH client to adapt its video encoding rate to network dynamics. While network conditions are typically affected by many different factors, these algorithms however usually consider only a few representative information, e.g., predicted available bandwidth or fullness of its playback buffer. In addition, the error in bandwidth estimation could significantly degrade their performance. Therefore, this paper presents Machine- Learning-based Adaptive Streaming over HTTP (MLASH), an elastic framework that exploits a wide range of useful network-related features to train a rate classification model. The distinct properties of MLASH are that its machine-learning-based framework can be incorporated with any existing adaptation algorithm and utilize big data characteristics to improve prediction accuracy. We show via trace-based simulations that machine-learning-based adaptation can achieve a better performance than traditional adaptation algorithms in terms of their target quality of experience (QoE) metrics. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:45:17Z (GMT). No. of bitstreams: 1 ntu-104-R01921101-1.pdf: 383010 bytes, checksum: 033478f00cb6f691a61c759bb5455614 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要i
Abstract ii Contents iii List of Figures v 1 Introduction 1 2 Related Work and Background 3 2.1 QoE Metrics and Rate adaptation algorithm . . . . . . . . . . . . . . . . 3 2.2 TCP throughput / bandwidth prediction . . . . . . . . . . . . . . . . . . 4 2.3 Resource allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 MLASH Design 6 3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Trace-based Evaluation 12 4.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Variable bitrate scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Convergence of Model Training . . . . . . . . . . . . . . . . . . . . . . 21 5 Conclusion 23 Bibliography 24 | |
| dc.language.iso | en | |
| dc.subject | 速率調節 | zh_TW |
| dc.subject | HTTP 串流 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | HTTP Streaming | en |
| dc.subject | Machine Learning | en |
| dc.subject | Rate Adaptation | en |
| dc.title | 基於機器學習方法之HTTP 串流速率調節機制 | zh_TW |
| dc.title | Machine Learning Based Rate Adaptation with Elastic Feature Selection for HTTP-Based Streaming | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林靖茹(Ching-Ju Lin),蔡欣穆(Hsin-Mu Tsai),楊得年(De-Nian Yang) | |
| dc.subject.keyword | HTTP 串流,速率調節,機器學習, | zh_TW |
| dc.subject.keyword | HTTP Streaming,Rate Adaptation,Machine Learning, | en |
| dc.relation.page | 28 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 374.03 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
