請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高全良(Chuan-Liang Kao) | |
| dc.contributor.author | Yun-Cheng Chang | en |
| dc.contributor.author | 張耘誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:34Z | - |
| dc.date.available | 2013-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 1. Kuhn, R.J., et al., Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5):p. 717-725.
2. Clyde, K., Kyle, J.L., Harris, E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J virol, 2006. 80(23):p. 11418-11431. 3. Gollins, S.W., Porterfield, J.S., Flavivirus infection enhancement in macrophages: An electron microscopic study of viral cellular entry. J. Gen Virol, 1985. 66(9):p. 1969-1982. 4. Hase, T., Summers, P.L., Eckels, K.H., Baze, W.B., An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: Maturation events. Arch Virol,1987. 92(3):p. 273-291. 5. Stadler, K., Allison, S.L., Schalich, J., Heinz, F.Z., Proteolytic activation of tick-borne encephalitis virus by furin. J Virol, 1997. 71(11):p. 8475-8481. 6. 法定傳染病通報定義, 行政院衛生署疾病管制局, 2008. 7. Shu, P.Y., et al. Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports. Clin Vaccine Immunol, 2009. 16(4):p. 589-591. 8. Gulber, D.J., Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 1998. 11(3):p. 480-496. 9. Halstead, S.B., O’Rourke, E.J., Antibody-enhanced dengue virus infection in promate leukocytes. Nature, 1977. 265(5596):p. 739-741. 10. Halstead, S.B., O’Rourke, E.J., Dengue virus and mononuclear phagocytes, I. Infection enhancement by non-neutralizing antibody. J. Exp Med, 1977. 146(1):p. 201-217. 11. Wu, Y.C., Epidemic dengue 2 on Liouchyou Shiang, Pingtung County in 1981. Chin J Microbiol Immunol, 1986. 19(3):p. 203-211. 12. 臺灣地區傳染病統計及監視年報-91年, 行政院衛生署疾病管制局, 2004. 13. 台灣地區埃及斑蚊分布鄉鎮現況, 行政院衛生署疾病管制局, 2009. 14. Domingo E., et al., The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance--a review. Gene,1985. 40(1):p. 1-8. 15. Lauring, A.S., Andino, R., Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 2010. 6(7): e1001005. 16. Delwart, E.L., et al. Genetic relationship determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env gene. Science, 1993. 262(5137):p. 1257-1261. 17. Fraser, C., Ferguson, N.M., Anderson, R.M., Quantification of intrinsic residual viral replication in treated HIV-infected patients. Proc Natl Acad Sci U S A, 2001. 98(26):p. 15167-15172. 18. Martell, M., et al., Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol, 1992. 66(5):p. 3225-3229. 19. Farci, P., et al., The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science, 2000. 288(5464):p. 339-344. 20. Wang, W.K., Lin, S.R., King, C.C., Chang, S.C., Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. J Virol, 2002. 76(9): p. 4662-4665. 21. Wang, W.K., Sung, T.L., Lee, C.N., Lin, T.Y., King, C.C., Sequence diversity of the capsid gene and the nonstructural gene NS2B of dengue-3 virus in vivo. Virology, 2002. 303(1), p. 181-191. 22. Lin, S.R., et al., Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human hosts: implications for transmission and evolution. J Virol., 2004. 78(22), p. 12717-12721. 23. Chao, D.Y., et al., Strategically examining the full-genome of dengue virus type 3 in clinical isolates reveals its mutation spectra. Virol J, 2005. 2:72. 24. Craig, S., et al., Diverse dengue type 2 virus populations contain recombinant and both parental viruses in a single mosquito host. J Virol, 2003. 77(7): p. 4463-4467. 25. Aaskov, J., et al., Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science, 2006. 311(5758): p. 236-238. 26. Kinoshita, H., et al., Isolation and characterization of two phenotypically distinct dengue type-2 virus isolates from the same dengue hemorrhagic fever patient. Jpn J Infect Dis, 2009. 62: p. 343-350. 27. Von Magnus, P., Incompletes form of influenza virus, Adv Virus Res,1954. 2: p 59-79. 28. Huang, A. and Baltimore, D., Defect viral particles and viral disease processes. Nature, 1970. 226: p. 325-327. 29. Noppornpanth, S., et al., Characterization of hepatitis C virus deletion mutants circulating in chronically infected patients. J Virol, 2007. 81(22):p. 12496-12503. 30. Pacini, L., et al. Naturally occurring hepatitis C virus subgenomic deletion mutants replicate efficiently in Huh-7 cells and are trans-packaged in vitro to generate infectious defective particles. J Virol, 2009. 83(18):p. 9079-9093. 31. Nüesch, J.P., de Chastonay, J., Siegl, G., Detection of defective genomes in hepatitis A virus particles present in clinical specimens. J Gen Virol, 1989. 70(12): p.3475-3480. 32. Li, D. et al., Defective interfering viral particles in acute dengue infections, PLoS ONE, 2011. 6(4): e19447. 33. Wu, M.H., et al., Epidemiology of dengue fever/dengue hemorrhagic fever in Taiwan, 2001–2003. Taiwan J Pub Health, 2005. 24: 452–459. 34. Wen T.H., et al., Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. Int J Infect Dis, 2010. 14(4): p. e334-343. 35. Chen, H.L., et al., Evolution of dengue virus type 2 during two consecutive outbreaks with an increase in severity in southern Taiwan in 2001–2002. Am J Trop Med Hyg, 2008. 79(4): p. 495-505. 36. Christenbury, J.G., et al., A method for full genome sequencing of all four serotypes of the dengue virus. J Virol Methods, 2010. 169(1): p. 202-206. 37. Lindenbach, B.D., Rice, C.M., Molecular biology of flaviviruses. Adv Virus Res, 2003. 59:p. 23-61. 38. Mangada, M.N., Igarashi, A., Molecular and in vitro analysis of eight dengue type 2 viruses isolated from patients exhibiting different disease severities. Virology, 1998. 244(2):p. 458-466. 39. Pandey, B.D., Igarashi, A., Severity-related molecular differences among nineteen strains of dengue type 2 viruses. Microbiol Immunol, 2000. 44(3):p. 179-188. 40. Chao, Y.C., et al. Higher infection of dengue virus serotype 2 in human monocytes of patients with G6PD deficiency. PLoS One, 3(2): e1557. 41. Blok, J., Gibbs, A.J., McWilliam, S.M., Vitarana, U.T., NS 1 gene sequences from eight dengue-2 viruses and their evolutionary relationships with other dengue-2 viruses. Arch Virol, 1991. 118(3-4):p. 209-223. 42. Raekiansyah, M., et al., Genetic variations and relationship among dengue virus type 3 strains isolated from patients with mild or severe form of dengue disease in Indonesia and Thailand. Southeast Asian J Trop Med Public Health, 2005. 36(5):p. 1187-1197. 43. Rodriguez-Roche, R., et al., Virus role during intraepideimic increase in dengue disease severity. Vector Borne Zoonotic Dis, 2011. 11(6):p. 675-81. 44. Mazumder, R., et al., Computational analysis and identification of amino acid sites in dengue E proteins relevant to development of diagnostics and vaccines. Virus Genes, 2007. 35(2):p. 175-286. 45. Butrapet, S., et al., Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion. Virology, 2011. 413(1):p. 118-127. 46. Gromowski, G.D., et al. Mutations of an antibody binding energy hot spot on domain III of the dengue 2 envelope glycoprotein exploited for neutralization escape. Virology, 2010. 407(2):p. 237-246. 47. Dirbin, A.P., et al., Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3'-untranslated region. Am J Trop Med Hyg, 2001. 65(5):p. 405-413. 48. Whitehead, S.S., et al., A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3' untranslated region is highly attenuated and immunogenic in monkeys. J Virol, 2003. 77(2):p. 1653-1657. 49. Vu, T.T., et al. Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl Trop Dis, 2010. 4(7): e757 50. Ramirez, A., et al. Evolution of dengue virus type 3 genotype III in Venezuela: diversification, rates and population dynamics. Virol J, 2010. 7: 329. 51. Wang, W.K., et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology, 2003. 305(2):p. 330-338. 52. Wang, W.K., et al. Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin Infect Dis, 2006. 43(8):p. 1023-1030. 53. André, P., et al., Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol, 2002. 76(14):p. 6919-6928. 54. Martin, C., Nielsen, S.U., Ibrahim, S., Bassendine, M.F., Toms, G.L., Binding of liver derived, low density hepatitis C virus to human hepatoma cells. J Med Virol, 2008. 80(5):p. 816-823. 55. Malet, I., Belnard, M., Aqut, H., Cahour, A., From RNA to quasispecies: a DNA polymerase with proofreading activity is highly recommended for accurate assessment of viral diversity. J Virol Methods, 2003.109(2):p. 161-70. 56. Potter, J., Zheng, W., Lee, J., Thermal stability and cDNA synthesis capability of SuperScript reverse transcriptase. Focus (Invitrogen), 2003. 25(1):p. 19-14. 57. Vasilakis, N., et al., Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog, 2009. 5(6): e1000457. 58. Willerth, S.M., et al., Development of a low bias method for characterizing viral populations using next generation sequencing technology. PLoS One, 2010. 5(10): e13564. 59. Prosperi, M.C., et al., Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing. BMC Bioinformatics, 2011. 12:5. 60. Chiewsilp, P., Scott, R.M., Bhamarapravati, N., Histocompatibility antigens and dengue hemorrhagic fever. Am J Trop Med Hyg, 1981. 30(5):p. 1100-1105. 61. LaFleur, C., et al., HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever. Hum Immunol, 2002. 63(11):p. 1039-1044. 62. Loke, H., et al., Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis, 2001. 184(11):p. 1369-1373. 63. Stephens, H.A., et al., HLA-A and -B allele associations with secondary dengue virus infection correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue antigen, 2002. 60(4):p. 309-318. 64. Zivna, I., et al., T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity. J Immunol, 2002. 168(11):p. 5959-5965. 65. Polizel, J.R., et al., Association of human leukocyte antigen DQ1 and fever in a white Southern Brazilian population. Mem Inst Oswaldo Cruz, 2004. 99(6):p. 559-562. 66. Guzman, M.G., Kouri, G., Dengue: an update. Lancet Infect Dis, 2002. 2(1):33-42. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46875 | - |
| dc.description.abstract | Dengue virus (DENV) is a member of Flavivirudae. There are 4 serotypes of dengue virus, DENV-1, DENV-2, DENV-3 and DENV-4. In Taiwan, the primary vectors of dengue virus are Aedes aegypti and Aedes albopictus. DENV can cause asymptomatic infection, mild dengue fever (DF), severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In recent years, there were indigenous cases every year in Taiwan. In 2002, there were 5336 cases including 241 DHF, and 21 fatal cases. Epidemiological study found that percentage of DHF cases increased in later period of the epidemic and more DHF cases in areas with high transmission intensity. Therefore, the aims of this study were: 1) to understand the association between the DENV-2 virus genetic variations and disease/epidemic severity, and 2) to explore the diversity of quasispeices in DENV-2 isolated from different temporal and spatial epidemiological characteristics.
In the experimental design and methods, first, 22 DENV-2 (14 early, 8 middle/late stage) isolated in June to December, 2002 that cultivated for two generations in C6/36 cells. Theses viral genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR) in fragments, and then analyzed differences in the full-length sequences of the nucleotides and amino acids. Besides, 12 (7 early, 5 middle/late stage) DENV-2 isolates were analyzed quasispecies of E protein region by clonal sequencing, calculated mean diversity and percentage of clones with nucleotide changes to quantitate the variations of quasispecies, and analyzed their tempo-spatial characteristics associated with diseases/epidemic severity. The results of full-length sequencing showed that the total identity of the DENV-2 nucleotides was 99.97 %. No specific sequence difference was found between DENV-2 from DF and DHF patients. Comparing the nucleotide/ amino acid sequences of DENV-2 to the consensus sequences of DENV-2 isolated in 2002, the numbers of nucleotide/amino acid differences between DF or DHF isolates were not significant (nucleotide: 2.92 vs 3.89, p= 0.41). Analyzing the temporal trend the DENV-2 from the early period of the epidemic were found to be with significantly more viral sequence identities to the consensus sequence than those DENV-2 from the middle and late periods (nucleotide difference: 2.00 vs 5.62, p= 0.0002). Moreover, the spatial trend demonstrate that DENV-2 obtained from areas with high transmission intensity in the early period of the epidemic had more nucleotide sequence identifies to the consensus sequences than those DENV-2 from areas with low transmission intensity in the same epidemic period. (mean: 1 vs 2.75, p= 0.10) The quasispecies of E protein of the 12 DENV-2s indicated that the mean diversities ranged from 0.003 % to 0.024 % and significantly increased with the increasing days of 4-6 than those of 0-3 after the onset of dengue illness. (d0-3: 0.010 %, d4-6: 0.018 %, p= 0.04). However, there were no significant differences in the diversities of DENV-2 quasispecies between mild DF and severe DHF cases, regardless 0-3 or 4-6 days after dengue onset. (0-3 days: 0.010 % vs 0.010 %, p= 0.64, 4-6days: 0.020 % vs 0.016 %, p= 0.4). Simultaneous analyses of tempo- and spatial factors revealed that DENV-2 quasispecies at days 0-3 after the onset of dengue illness were more homogeneous from areas with high transmission intensity and early period of the epidemic but this finding needs to increase sample size for better conclusion. In quantifying the titer of DENV-2 suspension grown from C6/36 mosquito cells), we discovered the plaque forming units (PFU)/copy number ratio at 5 days post-infection was lower in DENV-2 from later period of the epidemic than those DENV-2 in the early period, with overall range. 1/3000 to 1/16000. . In order to clarify the reasons of the difference, we selected one DENV-2 from early versus late periods of the epidemic grew them in mosquito C6/36 cells, harvested supernatants for sucrose gradient ultracentrifugation. The quantitative levels of DENV-2 were measured from each fraction of the 11 fractions as PFU/copy numbers for better comparison. The highest viral copy numbers all peaked in the same fraction (density 1.19g/ mL), regardless early or late DENV-2. Interestingly, late DENV-2’s certain low density fractions (1.07~1.13 g/ mL) involved high viral copy numbers but lower PFUs, implying the possible presence of defective virus. Whether these virus compositions might affect viral growth yields and/or host immunity, thereby leading to disease severity or higher DHF% or DHF/DF ratio, needs more studies to prove. In conclusion, DENV-2 obtained from the 4-6 days after the onset of dengue at an individual level and in the middle/late epidemic period of the 2002 epidemic at the population level contained more viral genetic variations and diversities of quasispecies than those DENV-2 from 0-3 days after dengue onset and early epidemic period, particularly in areas with high dengue clusters. Such a high homogeneity in the early epidemic period was also supported by the results from sucrose density gradients. More future experiments have to answer the mechanism involved in the association between increasing dengue virus diversity and epidemic severity through evolutionary selection of advantageous DENV-2 subvariant by analyzing the changing growth characteristics and other phenotypes of viruses in high/low sucrose density fractions and mixing experiments for verifying the possibility and the roles of defective interference particle in increasing DHF epidemic severity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:34Z (GMT). No. of bitstreams: 1 ntu-100-R98424007-1.pdf: 728733 bytes, checksum: 063e83ff410afc9c648c6820fc9676ab (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝....................................................i
中文摘要...............................................ii 英文摘要................................................v 第一章 緒論............................................1 第一節 登革病毒........................................1 一、登革病毒之構造......................................1 二、登革病毒之基因體....................................1 三、登革病毒之複製......................................1 四、登革病毒之臨床症狀與實驗室診斷......................2 五、登革病毒之流行病學..................................3 六、臺灣的登革病毒流行概況..............................3 第二節 類種............................................4 一、簡介................................................4 二、登革病毒的類種研究..................................4 第三節 缺陷干擾顆粒................................5 一、簡介................................................5 二、登革病毒的缺陷干擾顆粒研究..........................5 第四節 研究動機........................................6 第二章 材料與方法......................................7 第一節 實驗材料........................................7 一、試劑、試藥..........................................7 二、商用套組............................................8 三、細胞株..............................................8 四、病毒株..............................................8 第二節 實驗方法........................................9 一、試劑之製備..........................................9 二、細胞培養...........................................12 三、病毒培養...........................................12 四、測定病毒力價:溶斑試驗.............................13 五、病毒核酸抽取.......................................13 六、病毒核酸反轉錄.....................................14 七、聚合酶連鎖反應.....................................14 八、PCR產物純化........................................16 九、基因建構...........................................16 十、cDNA 3’端快速增幅.................................19 十一、反轉錄即時定量聚合酶連鎖反應.....................22 十二、即時定量聚合酶連鎖反應之標準品製備...............22 十三、蔗糖密度梯度分析.................................23 第三章 實驗結果.......................................24 第一節 病毒之全長基因序列.............................24 一、基因型及病毒序列分析...............................24 二、比較病毒序列與疾病嚴重程度之關聯性.................25 三、比較病毒序列與流行前後期之關聯性...................25 四、比較病毒序列與空間分布之關聯性.....................25 五、套膜蛋白區段基因序列分析...........................26 第二節 套膜蛋白區段之類種分析.........................26 一、套膜蛋白區段之類種分析.............................26 二、比較類種多寡與疾病嚴重程度之關聯性.................27 三、比較類種多寡與其他因素之關聯性.....................27 第三節 蔗糖密度梯度分析...............................28 一、PFU/ copy number比.................................28 二、聚合酶連鎖反應增幅sgRNA............................29 三、蔗糖密度梯度分析...................................29 第四章 討論...........................................30 第一節 病毒序列差異與疾病嚴重程度之關係................30 第二節 病毒序列差異與時間、空間之關係..................31 第三節 套膜蛋白之類種分析..............................32 第四節 蔗糖密度梯度分析................................33 第五節 實驗方法之限制..................................33 一、全長定序...........................................33 二、類種分析...........................................34 第六節 未來工作....................................35 參考文獻...............................................60 附錄...................................................64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類種 | zh_TW |
| dc.subject | 登革病毒 | zh_TW |
| dc.subject | 基因變異 | zh_TW |
| dc.subject | quasispecies | en |
| dc.subject | genetic variation | en |
| dc.subject | dengue virus | en |
| dc.title | 臺灣地區2002年第二型登革病毒基因變異及類種分析 | zh_TW |
| dc.title | Genetic Variations and Quasispecies of the 2002 Dengue Virus Serotype 2 in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金傳春(Chwan-Chuen King),李君男(Chun-Nan Lee),張淑媛(Sui-Yuan Chang) | |
| dc.subject.keyword | 登革病毒,基因變異,類種, | zh_TW |
| dc.subject.keyword | dengue virus,genetic variation,quasispecies, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 711.65 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
