請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46836
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張康聰(Kang-Tsung Kang) | |
dc.contributor.author | Shou-Hao Chiang | en |
dc.contributor.author | 姜壽浩 | zh_TW |
dc.date.accessioned | 2021-06-15T05:42:02Z | - |
dc.date.available | 2010-11-01 | |
dc.date.copyright | 2010-08-24 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-20 | |
dc.identifier.citation | Aleotti P., and Chowdhury R., 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment 58, 21-44.
Aleotti P., 2004. A warning system for rainfall-induced shallow failures. Engineering Geology 73: 247-265. Anderson SP., Dietrich WE., and Montgomery DR., 1997. Subsurface flow paths in a steep, unchanneled catchment. Water Resource Research 33: 2637-2653. Baum RL., and Reid ME., 1995. Geology, hydrology and mechanics of a slow-moving, clay-rich landslide, Honolulu, Hawaii, in Clay and Shape Slope Instability, Haneberg WC. and Anderson S. (eds). Geological Society of American Boulder, Colorado: 79-105. Beven KJ., and Kirkby MJ., 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43-69. Beven KJ., 1985. Distributed models. In: Anderson MG. and Burt TB., Editors, Hydrological Forecasting, Wiley, New York, N.Y.: 405-435. Beven KJ., and Binley AM., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-298. Beven KJ., 2001. Rainfall-Runoff Modelling, Wiley & Sons, Chichester: 217-225. Brandes EA., 1975. Optimizing rainfall estimates with the aid of radar. Journal of Applied Meteorology 14: 1339-1345. Brooks RH., and Corey WT., 1964. Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins. Burton A., and Bathurst JC., 1998. Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology 35, 89–99. Caine N., 1980. The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler 62A: 23-27. Caleffi V., Valiani A., and Zanni A., 2003. Finite volume method for simulating extreme flood events in natural channels. Journal of Hydraulic Research 41: 167-177. Campbell RH., 1975. Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California. USGS Professional Paper 851. US Geological Survey:Reston, VA. Cannon SH., and Ellen S., 1985. Rainfall conditions for abundant debris avalanches in the San Francisco Bay region, California. California Geology 38: 267-272. Carrara A., Crosta G.., and Frattini P., 2008. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94: 353-378. Carson MA., and Kirkby MJ., 1972. Hillslope Form and Process, Cambridge University Press. Casadei M., Dietrich WE., and Miller NL., 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms 28: 925-950. Chang KT., Chiang SH., and Hsu ML., 2007. Modeling typhoon- and earthquake- induced landslides in mountainous watershed using logistic regression. Geomorphology 89: 335-347. Chang KT., Chiang SH., and Feng L., 2008. Analyzing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 33: 1261-1271. Chang KT., and Chiang SH., 2009. An integrated physical-statistical model for predicting rainfall-induced landslides. Geomorphology, 105: 366-373. (SCI) Chen C., Lin L., Yu F., Lee C., Tseng C., Wang A., and Cheung K., 2007. Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural Hazards 40: 447-461. Cheung KKW., Huang L., and Lee C., 2006. A tropical cyclone rainfall climatology- persistence model for the Taiwan area. Proceedings: 27th Symposium on Hurricane and Tropical Meteorology, April 24-28, Monterey, CA. Chiang SH., and Hsu ML., 2006. Parameter calibration in a process based soil depth estimation model - assuming local steady state. Journal of Geographical Science, 44: 23-38 (In Chinese). Chiang SH., and Chang KT., 2009. Application of radar data to modeling rainfall-induced landslides. Geomorphology, 103: 299-309. Claessens L., Heuvelink GBM., Schoorl JM., and Veldkamp A., 2005. DEM resolution effects on shallow landslide hazard and soil redistribution modeling. Earth Surface Processes and Landforms 30, 461-477. Claessens L., Schoorl JM., and Veldkamp A., 2007a. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology 87: 16-27. Claessens L., Knapen A., Kitutu MG., Poesen J., and Deckers JD., 2007b. Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology 90: 23-35. Crosta G., and Marchetti M., 1993. Frane superficiali nel medio tratto della Valle Olona. Geologia Applicata e Idrogeologia 32: 60-77. Crosta G., 1998. Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology 35(2-3): 131-145. Dai FC., and Lee CF., 2003. A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landform 28: 527-545. Dadson SJ., Hovius N., Chen HY., Dade WB., Lin JC., Hsu ML., Lin C., Horng M., Chen T., Milliman J., and Stark, CP., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32, 733-736. Dietrich WE., Wilson CJ., Montgomery DR., and MacKean J., 1993. Analysis of erosion thresholds, channel networks and landscape evolution using a digital terrain model. Journal of Geology 101: 259-278. Dietrich WE., Reiss R., Hsu ML., and Montgomery DR., 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9: 383-400. Duan J., 1996. A coupled hydrologic–geomorphic model for evaluating effects of vegetation change in watersheds. PhD dissertation, Oregon State University. Duan J., and Grant GE., 2000. Shallow landslide delineation for steep forest watersheds based on topographic attributes and probability analysis. In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications. John Wiley & Sons, Inc., New York, 311-329. Dunne T., 1978. Field studies of hillslope flow processes. In: Kirkby, MJ., Editor, Hillslope Hydrology, Wiley, Chichester: 227–293. Fiorillo F., and Wilson RC., 2004. Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Engineering Geology 75: 236-289. Freer J., and Beven K., and Ambroise B., 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resource. Research 32(7): 2161-2173. Freeze RA., 1974. Streamflow generation. Review of Geophysics 12: 627-647. Godt JW., Baum RL., and Chleborad AF., 2006. Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms 31: 97-110. Gomes RAT., Guimarães RF., Carvalho Jr. OA., Fernandes NF., Vargas Jr. EA., and Martins ÉS., 2008. Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Nature Hazards 45: 197-209. Gorsevski PV., Gessler PE., Bill J., Elliot WJ., and Foltz RB., 2006. Spatial and temporally distributed modeling of landslide susceptibility. Geomorphology 80: 178-198. Grayson RB., 1992. Physically based hydrologic modeling 1. A terrain-based model for investigative purposes. Water Resource Research 28: 2639-2658. Guzzetti F., Carrara A., Cardinali M., and Reichenbach P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31, 181-216. Guzzetti F., Cardinali M., Reichenbach P., Cipolla F., Sebastiani C., Galli M., and Salvati P., 2004. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology 73: 229-245. Guzzetti F., Peruccacci S., Rossi M., and Start CP., 2007. Rainfall thresholds for the initiation of landslides. Meteorology and Atmospheric Physics 98: 239-267. Hammond C., Hall D., Miller S., and Swetik P., 1992. Level I Stability Analyses (LISA) Documentation for Version 2.0. Gen. Tech. Rep. INT-285. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, p. 190. Haneberg WC., 1991. Observation and analysis of pore pressure flucuations in a thin colluvium landslide complex near Cincinnati. Ohio. Engineering Geology 31: 159-184. Haneberg WC., and Onder Gocke A., 1994. Rapid water level fluctuations in a thin colluvium landslide west of Cincinnati, Ohio. Unite State Geological Survey Bulletin 2059C: 1-16. Heimsath AM., Dietrich WE., and Nishiizumi K., 1997. The soil prodiction fuction and landscape equilibrium. Nature 388: 358-361. Heimsath AM., Dietrich WE., and Nishiizumi K., 1999. Cosmogenic nuclides, topography, and the spatial variation of soil depth. Geomorphology 27: 151-172. Heuvelink DG., 1993. Error propagation in quantitative spatial modeling: Application in GIS, Ph.D. dissertation, Utrecht University, Netherlands. Howard KW., Gourley JJ., and Maddox RA., 1997. Uncertainties in WSR-88D measurements and their impacts on monitoring life cycles. Weather and Forecasting 12: 166-174. Hovius N., Stark CP., and Chu HT., 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology 108: 73-89. Hsu ML., 1995a. A grid based model for predicting dynamic soil pore pressure. Journal of Geographic Science 18: 1-21 (In Chinese). Hsu ML., 1995b. A grid based model for predicting potential shallow landslides. Journal of Geographic Science 19: 1-15 (In Chinese). Huang JC., Kao SJ., Hsu ML. and Lin JC., 2006. Stochastic procedure to extract and to integrate landslide susceptibility maps: and example of mountainous watershed in Taiwan. Natural Hazards and Earth system Sciences 6: 803-815. Hunt B., 1994. Newtonian fluid mechanics treatment of debris flow and avalanches. Journal of Hydraulic Engineering-ASCE 120: 1350-1363. Hungr O., 1995. A model for the runout analysis of rapid flow slides, debris flows and avalanches. Canadian Geotechnical Journal 32: 610-623. Imran J., Parker G.., and Locat J., 2001. 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of Hydraulic Engineering-ASCE 127: 959-968. Iovine G.., D’Ambrosio D., and Gergorio S., 2005. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66: 287-303. Iverson RM., Major JJ., 1987. Rainfall groundwater flow and seasonal movement at Minor Creek landslide, Northwestern California: Physical interpretations of empirical relations. Geological Society of America Bulletin 99: 579-594. Iverson RM., Reid ME., and LaHusen RG.., 1997. Debris flow mobilization from landslides. Annual Review of Earth Planet Sciences 25: 85-135. Iverson RM., 2000. Landslide triggering by rain infiltration. Water Resources Research 36: 1897-1910. Iverson RM., and Vallance JW., 2001. New views of granular mass flows. Geology 29: 115-118. Keefer DK., Wilson RC., Mark RK., Brabb EE., Brown W., Ellen SD., Harp EL., Wieczorek GF., Alger CS., and Zatkin RS., 1987. Real-time landslide warning during heavy rainfall. Science 238: 921-925. Krajewski WF., and Smith JA., 2002. Radar hydrology: rainfall estimation. Advances in Water Resources 25: 1387-1394. Laigle D., and Coussot P., 1997. Numerical modeling of mudflows. Journal of Hydraulic Engineering 123: 617-623. Lin DG.., Hsu SY., and Chang KT., 2009. Numerical simulations of flow motion and deposition characteristics of granular debris flows. Natural Hazards 50: 623-650. Liu KF., Li HC., and Hsu YC., 2009. Debris flow hazard assessment with numerical simulation. Nature Hazards 49: 137-161. Lu SY., and Taung KJ., 1995. Study on rainfall interception characteristics of natural hardwood forest in Central Taiwan. Bulletin of Taiwan Forestry Research Institute 10: 447-457. Marshall JS., Langille RC., and Palmer WM., 1947. Measurement of rainfall by radar. Journal of Meteorology 4: 186-191. Malczewski J., 1999. GIS and Multicriteria Decision Analysis. John Wiley & Sons, Inc., New York, NY. Montgomery DR., and Dietrich WE., 1994. A physically based model for topographic control on shallow landsliding. Water Resources Research 30: 1153-1171. Montgomery, DR., Sullivan, K., and Greenberg, HM., 2002. Regional test of a model for shallow landsliding. Hydrological Processes 12, 943-955. Montgomery DR., Schmidt KM., and Dietrich WE., 2009. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability. Journal of Geophysical Research- Earth Surface 114, Article number: F01031. Morrissey MM., Wieczorek GF., and Morgan BA., 2001. A comparative analysis of hazard models for predicting debris flows in Madison County, Virginia, Unite State Geological Survey Open File Report: 67. Morrissey MM., Wieczorek GF., and Morgan BA., 2004. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia. Environmental & Engineering Geoscience 10: 285-296. Moore ID., Grayson RB., and Ladson AR., 1991. Digital terrain modeling-a review of hydrological, geomorphological and biological applications. Hydrological Processes 5: 3-30. Okimura T., and Kawatani T., 1987. Mapping of the potential surface-failure sites on granite slopes. In International Geomorphology 1986, Part I, Gardiner V (ed.). Wiley: Chichester; 121-138. Okimura T., 1989. Prediction of slope failure using the estimated depth of the potential failure layer. Journal of Natural Disaster Science 11(1): 67-79. Onda Y., Mizuyama T., and Kato Y., 2003. Judging the time of rainfall-triggered debris flows by monitoring runoff: 3rd International Conference on Debris-Flow Hazard Mitigation, Davos, Switzerland. Parlange JY., Steenhuis TS., and Haverkamp R., 1999. Soil properties and water movement. Vadose Zone Hydrology: 99-129. Philips JR., 1991a. Hillslope infiltration: Planar Slopes. Water Resource Research 27: 109-117. Philips JR., 1991b. Hillslope infiltration: Divergent and convergent slopes. Water Resource Research 27: 1035-1040. Pradel D., and Raad G., 1993. Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering ASCE 119: 315-332. Quinn PF., Beven KJ., and Chevallier P., 1991. The prediction of hillslope flow path for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-79. Rahardjo H, Lim TT, Chang MF and Fredlund DG. 1995. Shear strength characteristics of a residual soil. Canadian Geotechnical Journal 32: 60-77. Reid ME., La Hunsen RG., and Iverson RM., 1997. Debris flow initiation experiments using diverse hydrologic triggers. In Debris Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Chen CL (ed.). ASCE Proceedings. ASCE: 1-11. Schnidt KM., Stock JD., Dietrich WE., Montgomery DR., and Schaub T., 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal 38: 995-1024. Seibert J., and McGlynn BL., 2007. A new triangular multiple flow algorithm for computing upslope areas from digital elevation models. Water Resource Research 43: Article number: W04501. Sidle RC., 1992. A theoretical model of the effects of timber harvesting on slope stability. Water Resources Research 28: 1897-1910. Steiner M., and Smith JA., 2002. Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. Journal of Atmospheric and Oceanic Technology 19: 673-686. Takahashi T., 1978. Mechanical characteristics of debris flow. Journal of the Hydraulics division-ASCE 104: 1153-1169. Takahashi T., 1991. Debris flow. Balkema, Rotterdam: 165. Tarboton DG., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resource Research 33: 309-319. Taylor DW., 1948. Fundamentals of soil mechanics. John Wiley, New York: 700. Terlien MJM., 1996. Modelling spatial and temporal variations in rainfall-triggered landslides. International Institute for Aerospace and Earth Sciences_ITC.. Pub. 2.Enschede: 254. Terzaghi K., 1925. Erdbaumechanik, Franz Deuticke, Vienna. Torres R., Dietrich WE., Montgomery DR., Anderson SP., and Loague K., 1998. Unsaturated zone processes and the hydrologic response of a steep, unchannelled catchment. Water Resources Research 34(8): 1865-1879. Toyos G.., Gunasekera R., and Zanchetta G., 2008. GIS-assisted modeling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth surface processes and landforms 33: 1693-1708. Van Asch ThWJ., and Sukmantalya IN., 1993. The modelling of soil slip erosion in the upper Komering area, South Sumatra Province, Indonesia. Geographic Fission Din. Quaterrnary 16, 81-86. Ward TJ., Li RM., and Simons DB., 1982. Mapping landslide hazards in forest watersheds. Journal of the Geotechnical Engineering Division-ASCE 108: 319-324. Wieczorek GF., and Glade T., 2005. Climatic factors influencing occurrence of debris flows. In Debris Flows Hazards and Related Phenomena, Jakob M, Hungr O. (eds). Springer: Berlin; 325-362. Wilson JW., 1970. Integration of radar and raingage data for improved rainfall measurement. Journal of Applied Meteorology 9: 489-497. Wilson RC., 2005. The rise and fall of a debris-flow warning system for the San Francisco Bay region, California. In Landslide Hazard and Risk, Glade T, Anderson M, Crozier MJ (eds). Wiley: Chichester, England: 493-516. Witcraft N., Lin Y., and Kuo Y., 2005. Dynamics of orographic rain associated with the passage of a tropical cyclone over a mesoscale mountain. Terrestrial, Atmospheric and Oceanic Sciences 16: 1133-1161. Wu W., 1993. Distributed slope stability analysis in steep forested basins. Ph.D. dissertation, Utah State University. Wu C., and Kuo Y., 1999. Typhoons affecting Taiwan: current understanding and future challenges. Bulletin of the American Meteorological Society 80: 67-80. Wu W. and Sidle RC., 1995. A distributed slope stability model for steep forested basins. Water Resources Research 31: 2098-2110. Wu C., Yen T., Kuo Y., and Wang W., 2002. Rainfall simulation associated with Typhoon Herb (1996) near Taiwan, Part I: The topographic effect. Weather and Forecasting 17: 1001-1015. Xin L., Reuter G. and Larochelle B., 1997. Reflectivity-rain rate relationships for convective rainshowers in Edmonton. Atmosphere-Ocean 35: 513-521. Yang M., and Ching L., 2005. A modeling study of typhoon Toraji (2001): physical parameterization sensitivity and topographic effect. Terrestrial, Atmospheric and Oceanic Sciences 16: 177-213. Zhang W., and Montgomery DR., 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research 30: 1019-1028. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46836 | - |
dc.description.abstract | 急促或延時較長的強降雨常誘發崩塌,而坡地土壤中孔隙水壓的舉升及土壤水對土壤材料強度的弱化,為導致邊坡不穩定的主因,若要正確地進行崩塌的預測,則需要一個能有效進行坡地水文收支計算的模式。除了崩塌外,崩落土石集合雨水後所發生之土石流,亦是山區災害肇生的主因,崩塌與土石流往往相伴而生。然而即便現今已有相當多的經驗模式與數值模式可分別對此二類災害進行預測,但卻鮮有一個整合型的模式可同時對此兩類災害進行預測評估,尤其現有之土石流數值模擬多以單一邊坡的土石流事件為對象,少有模式能對整個集水區之土石流災害進行評估,模式的應用也往往受限於資料的品質、代表性的問題,例如土壤資料與降雨分布的資訊。本研究提出一多重災害評估模式ISOLAD (Integrated SOil moisture-LAndslide- Debris flow model),此為一動態模式,透過整合土壤水模式、崩塌模式以及土石流模式,可對崩塌發生之位置、時機,以及土石流之路徑、影響範圍以及堆積之材積進行估測。此模式可結合雷達降雨資料,增加模式的預測效能,並結合蒙地卡羅模擬方式來進行序率式的模擬,以機率的方式表現災害發生之預測,可更有益於山區集水區的防災決策。
為驗證ISOLAD的有效性,本研究分別對各組成模式一一進行評估。首先,土壤水模式的評估藉由監測一個小型試驗區的土壤水動態與土壤水模式的計算結果來進行比較;其次,於一小區域、單一土石流事件,針對ISOLAD中的崩塌及土石流模式預測能力進行檢驗;前兩階段試驗後,最後則進行集水區尺度的預測試驗。本研究以石門水庫上游之白石溪集水區進行集水區做為ISOLAD之試驗對象,針對過去二場颱風事件所誘發之崩塌及土石流進行預測評估。以2004年艾利颱風來率定模式參數,隨後以2005年海棠颱風來進行驗證。結果顯示,ISOLAD針對崩塌及土石流之影響面積進行預測後,二場颱風事件之正確率均可達80%以上。然而ISOLAD之應用受限於使用資料的特性,例如以不同的DEM網格大小 進行測試後(5公尺、10公尺以及20公尺),發現當網格大小增加時,模式預測的正確性則降低,尤以對崩塌時機的預測影響為最。ISOLAD針對崩塌及土石流災害提供了一個多重災害之預測評估方式,但若要增進此模式之可應用性,本研究建議必須於不同的地理環境條近下進行更多的試驗。 | zh_TW |
dc.description.abstract | Landslides are triggered by different causes including intense or prolonged rainfall. An efficient model for evaluating the hillslope hydrology is crucial to landslide prediction. Besides, not only landslides but also rainfall-induced debris flows also lead to devastations. Although many numerical models have been proposed to simulate the physical behavior of a specific debris flow event, current models have rarely incorporated regional landslides and debris flows into a single assessment framework. In addition, applicability of landslide model to watersheds is often impeded by insufficient data quality and data representativity, such as rainfall information and topographic data. ISOLAD (Integrated SOil moisture-LAndslide-Debris flow model) is therefore proposed to predict the development of soil wetness, landslide initiation and debris flow into an integrated modeling framework. Besides, radar data for estimating rainfall patterns and Monte Carlo simulation for evaluating parameter uncertainties are embedded into ISOLAD to assess the coupled landslide-debris flow hazard in mountainous area.
ISOLAD involves three major modeling components: the soil moisture model, the landslide model and debris flow model. This study first verified the soil moisture model by a small plot experiment. The landslide model and debris flow model were verified by simulating a past landslide-debris event. Further, ISOLAD was applied to assess the landslide-debris flow hazard for a 120 km2 Baichi watershed located in the northern Taiwan, where landslides and debris flows occurred frequently during typhoon seasons. For watershed scale application, two typhoon events, Typhoon Aere (2004) and Typhoon Haitang (2005), were use to calibrate and validate the ISOLAD respectively. Both two events obtained accuracy higher than 80%. However, the performance of ISOLAD can be affected by input data and DEM resolution (5 m, 10 m and 20 m). It is that the increase of grid size, the decrease of prediction accuracy, especially the prediction of failure timing. The result implies an inherent limit for ISOLAD application using different qualities of input data. ISOLAD is a novel approach for modeling the multi-hazard: landslide initiation and debris flow. However, test over various regions of climate, geology and topography are suggested to improve the applicability of ISOLAD. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:02Z (GMT). No. of bitstreams: 1 ntu-99-D96228007-1.pdf: 4672125 bytes, checksum: 39398fa67edff15ccf6b3307df80f2d0 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝辭 II 中文摘要 III 英文摘要 V CONTENT VII FIGURES IX TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Research Questions 1 1.2 Objectives 5 CHAPTER 2 THEORY 8 2.1 Theory of Transient Redistribution of Soil Moisture 10 2.2 Theory of Slope Stability Analysis for Shallow Landslide 16 2.3 Theory of Debris Flow Modeling 19 2.4 Theory of Radar Rainfall Estimation 23 2.5 Theory of Monte Carlo Simulation and Muti-Hazard Assessment 25 CHAPTER 3 THE NUMERIAL MODEL: ISOLAD 30 3.1 Topographic Attributes Derived From DEM 32 3.2 Flow Partition Algorithm: α-Flow 34 3.3 Numerical Models 37 CHAPTER 4 EXPERIMENTAL DESIGN AND DATA 41 4.1 Research Statement and Operational Definition 41 4.2 Experimental Design for ISOLAD Development 45 4.3 Description of Study Area 46 4.4 Data 51 4.5 Application of Monte Carlo Simulation 69 CHAPTER 5 RESULTS 72 5.1 Verification of Soil Moisture Model - Plot A experiment 72 5.2 Verification of ISOLAD – Landslide and Debris Flow in Hsiuluan Village, Typhoon Aere, 2004 81 5.3 ISOLAD Application Using Monte Carlo Simulation – Baichi Watershed, Typhoon Aere, 2004 and Typhoon Haitang, 2005 90 CHAPTER 6 DISCUSSION 100 6.1 Assumptions of Soil Moisture Modeling 100 6.2 Assumptions of Landslide Initiation Modeling 102 6.3 Assumptions of Debris Flow Modeling 105 6.4 Model Uncertainties and Landslide Environment 107 6.5 Effectiveness of Radar Data Application 109 6.6 Effect of DEM Resolution on ISOLAD 114 6.7 ISOLAD Modeling at Different Scale 117 6.8 Applications of ISOLAD 120 CHAPTER 7 CONCLUSIONS 122 REFERENCE 124 | |
dc.language.iso | en | |
dc.title | 多重災害模擬-崩塌誘發及土石流 | zh_TW |
dc.title | Modeling Multi-Hazard: Landslide Initiation and Debris Flow | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳宏宇(Hung-Yu Chen),蔡博文(Bor-Wen Tsai),雷鴻飛(Hung-Fei Lei),黃誌川(Jr-Chuan Huang) | |
dc.subject.keyword | 崩塌,土石流,多重災害模擬,ISOLAD,蒙地卡羅模擬, | zh_TW |
dc.subject.keyword | Landslide,debris flow,modeling multi-hazard,ISOLAD,Monte Carlo simulation, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。