Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂理平
dc.contributor.authorYou-Di Linen
dc.contributor.author林猷迪zh_TW
dc.date.accessioned2021-06-15T05:41:57Z-
dc.date.available2010-08-24
dc.date.copyright2010-08-24
dc.date.issued2010
dc.date.submitted2010-08-21
dc.identifier.citationAndersson, B. -A., “Effects of bed particle size on heat transfer in circulating bed boilers”, Powder Technol., 87, 239-248 (1996).
Avidan, A. A., M. Edwards and H. Owen, “Innovative improvements highlight FCC’s past and future”, Oil Gas J., 88, 33-58 (1990).
Bai, D., Y. Jin, and Z. Yu, “Cluster observation in a two-dimensional fast fluidized bed”, in “Fluidization’91- Science and Technology” (M. Kwauk and M. Hasatani, eds.), pp. 110-115, Science Press, Beijing, Hebei, China (1991).
Bi, H.T., J. X. Zhu, Y. Jin, and Z. Q. Yu, “Forms of particle aggregations in CFB”, Proceedings of the 6th Chinese Conference on Fluidization, pp. 162-167, Wuhan, Hubei, China (1993)
Bi, H. T., “A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds”, Chem. Eng. Sci., 62, 3473-3493 (2007).
Bi, H. T. and L. S. Fan, “Existence of turbulent regime in gas-solid fluidization”, AIChE J., 38, 297-301 (1992).
Berggren, J. C., I. Bjerle, H. Eklund and O. Svensson, “56 Application of chemical and physical operations in a circulating fluidized bed system”, Chem. Eng. Sci., 35, 446-455 (1980).
Blackadder, W., M. Morris, E. Rensfelt and L. Waldheim, “Development of an integrated gasification and hot gas cleaning process using circulating fluidized bed technology”, in “Circulating Fluidized Bed Technology III” (P. Basu, H. Horio and M. Hasatani., eds.), pp. 511-518, Pergamon Press, Toronto, Ontario, Canada (1991).
Brereton, C. M. H. and J. R. Grace, “The transition to turbulent fluidization”, Trans. IChemE, Part A, Chem. Eng. Res. Design, 70, 246-251 (1992).
Bruce, A. and H. Y. Gao, “Wavelet analysis of 1-D signals”, in “Applied Wavelet Analysis with S-PLUS”, pp. 11-39, Springer, New York, NY, USA (1996).
Cai, P., Y. Jin, Z.Q. Yu and Z. W. Wang, “Mechanism of flow regime transition from bubbling to turbulent fluidization”, AIChE J., 36, 955-956 (1990).
Chehbouni, A., J. Chaouki, C. Guy and D. Klvana, “Characterization of the flow transition between bubbling and turbulent fluidization”, Ind. Eng. Chem. Res., 33, 1889-1896 (1994).
Contractor R. M., G. S. Patience, D. I. Garnett, H. S. Horowits, G. M. Sisler and H. E. Bergna, “A new process for n-butane oxidation to maleic anhydride using a circulating fluidized bed reactor”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidian, ed.), pp. 387-391, AIChE, New York, NY, USA (1994).
Cui, H., N. Mostoufi and J. Chaouki, “Characterization of dynamic gas-solid distribution in fluidized beds”, Trans. Inst. Chem. Eng., 55, 274-282 (2000).
Daubechies, I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure & Applied Math., 41, 909-996 (1988).
Ellis, N., H. T. Bi, C. J. Lim and J. R. Grace, “Hydrodynamics of turbulent fluidized beds of different diameters”, Powder Technol., 141, 124-136 (2004).
Ellis, N., L. A. Briens, J. R. Grace, H. T. Bi and C. J. Lim, “Characterization of dynamic behaviour in gas-solid turbulent fluidized bed using chaos and wavelet analyses”, Chem. Eng. J., 96, 105-116 (2003).
Geldart, D., “Types of gas fluidization”, Powder Technol., 7, 285-292 (1973).
Gidaspow, D., Y. P. Tsuo and K. M. Luo, “Computed and experimental cluster formation and velocity profiles in circulating fluidized beds”, in “Fluidization VI” (J. R. Grace, L. W. Shemilt and M. A. Bergougnou, eds.), pp. 81-88, American Institute of Chemical Engineers, New York, NY, USA (1989).
Glicksman, L. R., M. Lints and Y. Katoh, “Visualization of the particle behavior near the wall of a circulating fluidized bed”, Video Presentation at the 2nd ASME-JSME Fluid-Engineering Joint Conference, Nagoya, Aichi, Japan (1990).
Grace, J. R., “Contacting modes and behaviour classification of gas-solid and other two-phase suspensions”, Can. J. Chem. Eng., 64, 353-363 (1986).
Grace, J. R. and H. T. Bi, “Introduction to circulating fluidized beds”, in “Circulating Fluidized Beds” (J. R. Grace, A. A. Avidian and T. M. Knowlton, eds.), pp. 8-13, Blackie Academic & Professional, New York, NY, USA (1997).
Graf, R., “First operating experience with a dry flue gas desulfurization (FGD) process using a circulating fluidized bed (FGD-CFB)”, in “Circulating Fluidized Bed Technology” (P. Basu, ed.), pp. 317-327, Pergamon Press, Toronto, Ontario, Canada (1986).
Grossmann, A., J. Morlet and T. Paul, “Transform associated to square integrable group representation-I: general results”, J. Math. Physics, 26, 2473-2479 (1985).
Guenther, C. and R. Breault, “Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed”, Powder Technol., 173, 163-173 (2007).
Haider, A., and O. Levenspiel, “Drag coefficient and terminal velocity of spherical particles”, Powder Technol., 58, 63-70 (1989).
Harris, A. T., J. F. Davidson and R. B. Thorpe, “The prediction of particle cluster properties in the near wall region of a vertical riser”, Powder Technol., 127, 128-143 (2002).
Harris, B. J., J. F. Davidson and Y. Xue, “Axial and radial variation of flow in circulating fluidized bed risers”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidan, ed.), pp. 103-110, American Institute of Chemical Engineers, New York, NY, USA (1994).
Herbert, P. M., T.A. Gauthier, C. L. Briens and M. A. Bergougnou, “Application of fiber optic reflection probes to the measurement of local particle velocity and concentration in gas-solid flow”, Powder Technol., 80, 243-252 (1994).
Hirsch, M., K. Janssen and H. Serbent, “The circulating fluidized bed as reactor for chemical and metallurgical processes”, in “Circulating Fluidized Bed Technology” (P. Basu, ed.), pp. 329-339, Pergamon Press, Toronto, Ontario, Canada (1986).
Hoebink J. H. B. J. and K. Rietema, “Drying granular solids in fluidized-I:Description on basis of mass and heat transfer coefficients”, Chem. Eng. Sci., 35(10), 2135-2139 (1980).
Horio, M., “High velocity operation of fluidized beds”, J. Powder Technol. Japan, 23, 80-90 (1986).
Horio. M., “Hydrodynamics”, in “Circulating Fluidized Beds” (J. R. Grace, A. A. Avidian and T. M. Knowlton, eds.), pp. 21-25, Blackie Academic & Professional, New York, NY, USA (1997).
Horio, M. and M. Ito, “Prediction of cluster size in circulating fluidized beds”, J. Chem. Engng Japan, 30(4), 691-697 (1997).
Horio, M. and R. Clift, “A note on terminology: ‘cluster’ and ‘agglomerates’”, Powder Technol., 70, 196 (1992).
Horio, M. and H. Kuroki, “Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds”, Chem. Eng. Sci., 49, 2413-2421 (1994).
Horio, M., H. Ishill and M. Nishimuro, “On the nature of turbulent and fast fluidized beds”, Powder Technol., 70, 239-246 (1992).
Horio, M., K. Morishita, O. Tachibana and N. Murata, “Solids distribution and movement in circulating fluidized bed”, in “Circulating Fluidized Bed Technology II” (P. Basu and J. F. Large, eds.), pp. 147-154, Pergamon Press, Toronto, Ontario, Canada (1988).
Ishida, M. and H. Tanaka, “An optical probe to detect both bubbles and suspended particles in a three-phase fluidized bed”, J. Chem. Eng. Japan, 15, 389-391 (1982).
Ishii, H., M. Nakajima and M. Horio, “The clustering annular flow model of circulating fluidized beds”, J. Chem. Eng. Japan, 22(5), 484-490 (1989).
Ito, M., M. Tsukada, J. Shinamura and M. Horio, “Prediction of cluster size and slip velocity in circulating fluidized beds by a DSMC model”, in “Fluidization IX” (L. S. Fan and T. M. Knowlton, eds.), pp. 525-532, Engineering Foundation, New York, NY, USA (1998).
Ji, H., H. Ohara, K. Kuramoto, A. Tsutsumi, K. Yoshida and T. Hirama, “Nonlinear dynamics of gas-solid circulating fluidized-bed system”, Chem. Eng. Sci., 55, 403-410 (2000).
Jiang, P. P. Cai and L. S. Fan, “Transient flow behavior in fast fluidization”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidan, ed.), pp. 111-116, American Institute of Chemical Engineers, New York, NY, USA (1993).
Jin, Y., Z. Q. Yu, Z. Wang and P. Cai, “A criterion for transition from bubbling to turbulent fluidization”, in “Fluidization V” (K. Φstergaard and A. Sorensen, eds.), pp. 289-296, Engineering Foundation, New York, NY, USA (1986).
Kashkin, V. N., V. S. Lakhmostov, I. A. Zolotarskii, A. S. Noskov and J. J. Zhou, “Studies on the onset velocity of turbulent fluidization for alpha-alumina particles”, Chem. Eng. J., 91, 215-218 (2003).
Kulkarni, A. A., J. B. Joshi, V. R. Kumar and B. D. Kuljarni, “Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA”, Chem. Eng. Sci., 56, 5037-5048 (2001).
Kunii, D. and O. Levenspiel, Fluidization Engineering, John Wiley, New York, United States (1969).
Kunii, D. and O. Levenspiel, Fluidization Engineering II, Butterworth Heineman, New York, United States (1991).
Lackermeier, U., C. Rudnick, J. Werther, A. Bredebusch and H. Burkhardt, “Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing”, Powder Technol., 114, 71-83 (2001).
Lewis, W. K., E. R. Gilliland and W. C. Bauer, “Characteristics of Fluidized Particles”, Ind. Eng. Chem., 41, 1104-1117 (1949).
Li, H., “Application of wavelet multi-resolution analysis to pressure flutuations of gas-solid two-phase flow in horizontal pipe”, Powder Technol., 125, 61-73 (2002).
Li, H., “Multi-scale aggregation of particles in gas-solids fluidized beds”, China Particuology, 2(3), 101-106 (2004).
Li, H., Y. Xia, Y. Tung and M. Kwauk, “Micro-visualization of two-phase flow structure in a fast-fluidized bed”, in “Circulating Fluidised Bed Technology III” (P. Basu, M. Horio and M. Hasatani, eds.), pp. 183-188, Pergamon, Oxford, UK (1991).
Li, J. and M. Kwauk, “Particle-fluid two-phase flow - the energy minimization multiscale method”, Metallurgical Industry Press, Beijing, Hebei, China (1994).
Li, Y. and M. Kwauk, “The dynamics of fast fluidization”, in “Fluidization” (J.R. Grace and J.M. Matsen eds.), pp. 537-544, Plenum Press, New York, NY, USA (1980).
Li, J., L. Wen, G.. Qian, H. Cui and M. Kwauk, “Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems”, Chem. Eng. Sci., 51, 2693-2698 (1996).
Lints, M. C., “Particle-to-wall heat transfer in circulating fluidized beds”, Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, MC, USA (1992).
Lints, M. C. and L. R. Glicksman, “The structure of particle cluster near the wall of a circulating fluidized bed”, AIChE Symp. Ser., 89(296), 35-52 (1993).
Lin, Q., F. Wei and Y. Jin, “Transient density signal analysis and two-phase microstructure flow in gas-solid fluidization”, Chem. Eng. Sci., 56, 2179-2189 (2001).
Liu, X. H., S. Q. Gao and J. H. Li, “Characterizing particle clustering behavior by PDPA measurement for dilute gas-solid flow”, Chem. Eng. J., 108, 193-202 (2005).
Louge, M., D. J. Lischer and H. Chang, “Measurement of voidage near the wall of a circulating fluidized bed riser”, Powder Technol, 62, 269-276 (1990).
Loung, P. H. and S. C. Bhattacharya, “A study of solid circulation rate in a circulating fluidized bed”, Int. J. Energy Research, 17, 479-490 (1993).
Lu, X. and H. Li, “Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed”, Chem. Eng. J., 75, 113-119 (1999).
Lu, X., S. Li, L. Du, J. Yao, W. Lin and H. Li, “Flow structures in the downer circulating fluidized bed”, Chem. Eng. J., 112, 23-31 (2005).
Makkawi, Y. T. and P. C. Wrighti, “Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography”, Chem. Eng. Sci., 57, 2411-2437 (2002).
Mallat, S., “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Trans. Pattern Anal. Mach. Intell, 11(7), 674-693 (1989).
Matsuno, Y., H. Yamaguchi, T. Oka, H. Kage and K. Higashitani, “The use of optical fiber probes for the measurement of dilute particle concentrations: Calibration and application to gas-fluidized bed carryover”, Powder Technol., 35, 215 (1983).
Manyele, S. V., J. H. Parssinen and J. -X. Zhu, “Characterizing particle aggregates in a high-density and high-flux CFB riser”, Chem. Eng. J., 88, 151-161 (2002).
Moran, J. C. and L. R. Glicksman, “Experimental and numerical studies on the gas flow surrounding a single cluster applied to a circulating fluidized bed”, Chem. Eng. Sci., 58, 1879-1886 (2003).
Mori, S., O. Hashimoto, T. Haruta, K. Mochizuki, W. Matsutani, S. Hiraoka, I. Yamada, T. Kojima and K. Tuji, “Turbulent fluidization phenomena”, in “Circulating Fluidized Beds Technology II” (P. Basu and J. F. Large, eds.), pp. 105-112, Pergamon, Oxford, UK (1988).
Mori, S., D. Liu, K. Kato and E. Kobayashi, “Flow regime and critical velocity in a circulating fluidized bed”, Powder Technol., 70, 223-227 (1992).
Morlet, J., G. Arens, I. Fourgeau and D. Giard, “Wave propagation and sampling theory”, Geophysics, 47, 203-236 (1982).
Murphree E. V., C. L. Brown, H. G. M. Fischer, E. J. Gohr and W. J. Sweeney, “Fluid Catalyst Process-Catalytic of Petroleum”, Industrial and Engineering Chemistry, 35, 768-773 (1943).
Pandey, P. R. Turton, P. Yue and L. Shadle, “Nonintrusive particle motion studies in the near-wall region of a pilot-scale circulating fluidized bed”, Ind. Eng. Chem. Res., 43, 5582-5592 (2004).
Perales, J. F., T. Coll, M. F. Llop, L. Puigjaner, J. Arnaldos and J. Casal, “On the transition from bubbling to fast fluidization regimes”, in “Circulating Fluidized Beds Technology III” (P. Basu, M. Horio and M. Hasatani, eds.), pp. 73-78, Pergamon, Oxford, UK (1991).
Puchyr D. M. J., A. K. Mehrotra and L. A. Behie “Hydrodynamic and kinetic modeling of circulating fluidized bed reactors applied to a modified Claus plant”, Chem. Eng. Sci., 51(24), 5251-5262 (1996).
Reh, L., “Fluidized Bed Processing”, Chem. Eng. Prog., 67(2), 58~63 (1971).
Reh, L., “The Circulating fluidized bed reactor-a key to efficient gas/sold processing”, in “Circulating Fluidized Bed Technology” (P. Basu, ed.), pp. 105-118, Pergamon Press, Toronto, Ontario, Canada (1986).
Ren, J. and J. Li., “Wavelet analysis of dynamic behavior in fluidized beds”, in “Fluidization IX” (L. S. Fan and T. M. Knowlton, eds.), pp. 629-636, Engineering Foundation, New York, NY, USA (1998).
Ren, J., Q. Mao, J. Li and W. Lin, “Wavelet analysis of dynamic behavior in fluidized beds”, Chem. Eng. Sci., 56, 981-988 (2001).
Rhodes, M. and H. Cheng, “The visualization of macro structure of the gas-solids suspension in high density CFB”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidan, ed.), pp. 588-593, American Institute of Chemical Engineers, New York, NY, USA (1993).
Rhodes, M., H. Mineo and T. Hirama, “Particle motion at the wall of a circulating fluidized bed”, Powder Technol., 70, 207-214 (1992).
Schnitzlein, M. G.. and H. Weinstein, “Flow characterization in high-velocity fluidized beds using pressure fluctuations”, Chem. Eng. Sci., 43, 2605-2614 (1988).
Sharma, A. K., K. Tuzla, J. Matsen and J. C. Chen, “Parametric effects of particle size and gas velocity on cluster characteristics in fast fluidized beds”, Powder Technol., 111, 114-122 (2000).
Shi H. X., Q. H. Wang, Z. Y. Luo and K. F. Cen, “Visualization of clusters in a circulating fluidized bed by means of particle-image velocimetry (PIV) technique”, Power Engineering, 22(1) (in Chinese), 1589-1593 (2002).
Shingles, T. and A. F. McDonald, “Commercial experience with Synthol CFB reactors”, in “Circulating Fluidized Bed Technology II” (P. Basu and J. F. Large, eds.), pp. 43-50, Perhamon Press, Toronto, Ontario, Canada (1988).
Shou, M. C. and L. P. Leu, “Energy of power spectral density function and wavelet analysis of absolute pressure fluctuation measurements in fluidized beds”, Trans. IChemE, Part A, Chem. Eng. Res. Design, 83, 478-491 (2005a).
Shou, M. C. and L. P. Leu, “Identification of transition velocities in fluidized beds using wavelet analysis”, J. Chem Eng. Japan, 38, 409-421 (2005b).
Son, J. E., J. H. Choi and C. K. Lee, “Hydrodynamics in a large circulation fluidized bed”, in “Circulating Fluidized Beds Technology II” (P. Basu and J. F. Large, eds.), pp. 113-120, PerGamon, Oxford, UK (1988).
Soong, C. H., K. Tuzla and J. C. Chen, “Identification of particle clusters in circulation fluidized bed”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidan, ed.), pp. 615-620, American Institute of Chemical Engineers, New York, NY, USA (1993).
Squires, A. M., “The story of fluid catalytic cracking: The first ‘circulating fluid bed’”, in “Circulating Fluidized Bed Technology”, Proceedings of First International Conference On Circulating Fluidized Beds, Halifax, Nova Scotia, November 18-20, 1985 (P. Basu, ed.), pp. 1-19, Pergamon Press, New York, NY, USA (1986).
Stringer, J. and I. G. Wright, “Material issues in fluidized bed combustion”, J. Materials for energy systems, 8(3), 319-331 (1986).
Stemarding, S., ”The pneumatic transport of cracking catalyst in vertical risers”, Chem. Eng. Sci., 17(8), 599-608 (1962).
Sun, G. L. and G. Chen, “Transition to turbulent fluidization and its prediction”, in “Fluidization VI” (J. R. Grace, L. W. Schemilt and M. A. Bergoubnou, eds.), pp. 33-44, Engineering Foundation, New York, NY, USA (1989).
Tian, H., C. Yang, X. -L. Gou, Y. -Y. Zhang and Z. -Z. Liao, “Experimental study on CFBC co-combustion of municipal solid wastes and oil shale”, in “Challenges of Power Engineering and Environment Volume 1: Proceedings of the International Conference on Power Engineering 2007”, (K. Cen, Y. Chi and F. Wang, eds.), pp. 1103-1108, Zhejiang University Press & Springer Berlin Heidelberg, Hangchow Zhejiang, China (2007).
Tuzla, K., A. K. Sharma, J. C. Chen, T. Schiewe, K. E. Witth and O. Molerus, “Transient dynamics of solid concentration in downer fluidized bed”, Powder Technol., 100, 166-172 (1998).
Wang, S., H. Liu, H. Lu, W. Liu, J. Ding and W. Li, “Flow behavior of clusters in a riser simulated by direct simulation Monte Carlo method”, Chem. Eng. J., 106, 197-211 (2005).
Wei, F., Y. Jin and Z. Yu, “The visualization of macro structure of the gas-solids suspension in high density CFB”, in “Circulating Fluidized Bed Technology IV” (A. A. Avidan, ed.), pp. 588-593, American Institute of Chemical Engineers, New York, NY, USA (1993).
Wen, C. H. and Y. H. Yu, “A generalized method for predicting the minimum fluidization velocity”, AIChE J., 12, 610-612 (1996).
Wilhelm, R. H. and M. Kwauk, “Fluidization of solid particles”, Chem. Eng. Progr., 44, 201-218 (1948).
Wu, R. L., “Heat transfer in circulating fluidized beds”. Doctoral Thesis, University of British Columbia, Vancouver, BC, Canada (1989).
Wu, R. L., C. J. Lim, J. R. Grace and C. M. H. Brereton, “Suspension-to-surface heat transfer in a circulating-fluidized-bed combustor”, AIChE J., 35, 1685-1691 (1989a).
Wu, R. L., C. J. Lim and J. R. Grace, “The measurement of instantaneous local heat transfer coefficients in a circulating fluidized bed”, Can. J. Chem. Eng., 67, 301-307 (1989b)
Wu, R. L., J. R. Grace and C. J. Lim, “A model for heat transfer in circulating fluidized beds”, Chem. Eng. Sci., 45, 3389-3398 (1990)
Wu, R. L., C. J. Lim, J. R. Grace and C. M. H. Brereton, “Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed”, Int. J. Heat Mass Transfer, 34(8), 2019-2027 (1991).
Wu, B., L. Briens and J. -X. Zhu, “Multi-scale flow behavior in gas-solids two-phase flow systems”, Chem. Eng. J., 117, 187-195 (2006).
Xu, G. and K. Kato, “Hydrodynamic equivalent diameter for clusters in heterogeneous gas-solid flow”, Chem. Eng. Sci., 54, 1837-1847 (1999).
Yang, T. Y. and L. P. Leu, “Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed” AIChE J., 55(3), 612-629 (2009).
Yerushalmi, J. and N. T. Cankurt, “Further studies of the regimes of fluidization”, Powder Technol., 24, 187-205 (1979).
Yerushalmi, J., N. T. Cankurt, D. Geldart and B. Liss, “Flow regimes in vertical gas-solid contact systems”, AIChE Symp. Ser., 174(176), 1-12 (1978).
Zenz, F. A., “Two-phase fluid-solid flow”, Ind. Eng. Chem., 41, 2801-2806 (1949).
Zhang, H., P. M. Johnston, J. X. Zhu, H. I. de Lasa and M. A. Bergougnou, “A novel calibration procedure for a fiber optic solids concentration probe”, Powder Technol., 100, 260-272 (1998).
Zhou, J., J. R. Grace, S. Qin, C. M. H. Brereton, C. J. Lim and J. Zhu, “Voidage profiles in a circulating fluidized bed of square cross-section”, Chem. Eng. Sci., 49, 3217-3226 (1994).
Zhou, H., J. Lu and L. Lin, “Turbulence structure of the solid phase in transition region of a circulating fluidized bed”, Chem. Eng. Sci., 55, 839-847 (2000).
Zhu, J. -X. and H. -T. Bi, “Distinctions between low density and high density circulating fluidized beds”, Can. J. Chem. Eng., 73, 644-649 (1995).
Zjierveld, R. C., F. Johnsson, A. Marzocchella, J. C. Schouten and C. M. van den Bleek, “Fluidization regimes and transitions from fixed bed to dilute transport flow”, Powder Technol., 95, 185-204 (1998).
Zou, B., H. Li, Y. Xia and X. Ma, “Cluster structure in a circulating fluidized bed”, Powder Technol., 78, 173-178 (1994).
錢建嵩, 黃正忠, 楊玉樹, 歐建志, 張瑞顯, 吳耿東, 游逸將, “流體化床技術”, 高立圖書有限公司, 台北市, 台灣 (1992)。
金涌, 祝京旭, 汪展文, 俞芷青, ”流態化工程原理”, 清華大學出版社, 北京, 中國 (2001)。
蕭明昌, ”移轉速度的存在性及其對紊流流體化床流態行為之研究”, 國立台灣大學化學工程研究所博士論文, 台北市, 台灣 (2004)。
余傛斯, ”利用小波分析壓力擾動訊號來界定B類粒子流體化流域”, 國立台灣大學化學工程研究所碩士論文, 台北市, 台灣 (2007)。
王志恩, ”循環式流體化床中粒子速度之探討”, 國立台灣大學化學工程研究所碩士論文, 台北市, 台灣 (2008)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46829-
dc.description.abstract在循環式流體化床(Circulating fluidized bed, CFB)系統內,因為氣-固相之間的交互作用產生複雜之氣-固流動型態,導致床內固體粒子聚集而形成絮狀物(clusters),因此氣-固流經常表現出多尺度之流力行為。以往學者使用固體粒子含率擾動訊號之平均值與標準偏差等參數來探討流體化床內之絮狀物流力行為,但是卻容易遺漏在訊號中的某些時變(time-varient)特徵,而無法準確地分析在循環式流體化床內之絮狀物流力特性。
本研究在裝置為一內徑0.108 m、高5.75 m之循環式流體化床內,使用平均粒徑115 μm、密度2462 kg/m3之玻璃珠(Geldart B類粒子)作為床質粒子,以光纖探針在CFB的底部濃相區及飛濺區中量測其固體粒子含率(solids hold-up)擾動訊號。由於原始訊號具有多尺度與時變特性,因此利用多層次解析度(multi-resolution analysis, MRA)之方式,得到一個較適當的粗波門檻尺度作為絮狀物鑑識之準則。以此準則,可確定在循環式流化床內底部濃相區與飛濺區中之絮狀物流力特性(絮狀物顯現時間分率、絮狀物顯現頻率、平均絮狀物顯現時間 以及絮狀物之平均固體粒子含率 ),並且比較A類粒子與B類粒子在床壁區域附近之流力行為之異同。
zh_TW
dc.description.abstractBecause solid particles accumulated clusters by the chaotic interactions between the void and the solid phases, the gas-solid flow in a circulating fluidized bed (CFB) displayed multi-scales dynamic behaviors. The time-variant features would be neglected by the analytic method using some parameters, eg. the mean and the standard deviation of the solids hold-up signals measured in CFB.
The solids hold-up fluctuation signals of Geldart group B particles (glass bead: particle size=115 μm, density=2462 kg/m3) in the bottom dense region and the splash zone of CFB (0.108 m i.d. and 5.75 m height) were measured by a fiber optic probe in this study. Because the solids hold-up signals displayed multi-scales and time-variant dynamic behaviors, an appropriate level of the approximation subsignal was determined by wavelet analysis based on multi-resolution analysis. By this criterion, the dynamic properties of clusters in the bottom dense region and the splash zone of a circulating fluidized bed were determined. The dynamic properties of clusters of Geldert group A and B particles near the wall in CFB were identified and compared.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:41:57Z (GMT). No. of bitstreams: 1
ntu-99-R96524055-1.pdf: 9730770 bytes, checksum: 47433704dd1ffd7d852b1889d76b95d5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
一、 緒論 1
1-1 研究動機 1
1-2 研究背景 3
1-3 研究目的 7
二、 文獻回顧 8
2-1 固體粒子絮狀物之介紹 8
2-2 絮狀物之鑑識準則 14
2-3 絮狀物之流力性質 19
三、 實驗裝置與步驟 21
3-1 實驗裝置 21
3-1-1 裝置介紹 21
3-1-2 細部說明 21
3-1-2-1 光纖探針校正系統 21
3-1-2-2 循環式流體化床系統 26
3-2 床質粒子之物性及流力性質 27
3-2-1 床內流態的界定 27
3-2-2 操作變數 32
3-3 實驗步驟 32
四、 固體粒子含率擾動訊號分析 35
4-1 小波的定義 35
4-2 小波轉換 35
4-3 多層次解析度分析(Multi-Resolution Analysis, MRA) 36
4-4 實驗訊號的分析方式 38
五、 結果與討論 40
5-1 小波分析之粗波門檻值之選擇 40
5-1-1 粗波尺度之分類 40
5-1-2 選擇合適之粗波門檻 49
5-2 各種不同門檻準則之比較 57
5-3 固體粒子絮狀物之分布 60
5-3-1 絮狀物顯現時間分率Fcl 60
5-3-2 絮狀物顯現頻率fcl 73
5-3-3 平均絮狀物之固體粒子含率 -εsc76
5-3-4 絮狀物平均顯現時間-τcl78
5-4 近床壁之固體粒子絮狀物流力特性 80
5-4-1 B類固體粒子絮狀物之流力特性 80
5-4-2 A類粒子與B類粒子之絮狀物流力特性比較 86
5-4-3 固體粒子種類與粗波門檻尺度之關係 90
六、 結論 92
七、 符號說明 94
八、 參考文獻 97
九、 附錄 109
附錄 A. db3父小波(father wavelet)與母小波(mother wavelet) 109
附錄 B. 迴路壓封閥(loop-seal valve)固體粒子回流量之校正曲線 110
附錄 C. 循環式流體化床內之軸向空隙度分布 113
附錄 D. 多層次解析度分析之S-Plus軟體與分析程式 114
附錄 E. 光纖探針的校正 115
E-1 校正方式 115
E-2 校正步驟 116
dc.language.isozh-TW
dc.title以多層次解析度在循環式流體化床內鑑識B類粒子之絮狀物特性zh_TW
dc.titleIdentification of Clusters in a Circulating Fluidized Bed of Geldart Group B Particles by Multi-Resolution Analysisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭修伯,吳耿東
dc.subject.keyword絮狀物,流體化床,多層次解析度,zh_TW
dc.subject.keywordcluster,fluidized bed,multi-resolution,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2010-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
9.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved