請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46796
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳光鐘 | |
dc.contributor.author | Yu-Ting Huang | en |
dc.contributor.author | 黃渝婷 | zh_TW |
dc.date.accessioned | 2021-06-15T05:41:34Z | - |
dc.date.available | 2012-01-17 | |
dc.date.copyright | 2011-01-17 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2011-01-12 | |
dc.identifier.citation | 中文部分:
[1] 張麟軍,(2002),「整合性應力波傳法評估場址頻率特性之研究」,國立中央大學應用地質研究所碩士論文,第10頁。 [2] 陳世豪,(2003),「動態埋藏源於異向彈性多層介質內之暫態分析」,國立臺灣大學應用力學研究所博士論文。 [3] 洪書昀,(2006),「含孔洞無限域受平面P波入射之動態反應」,國立臺灣大學土木工程研究所碩士論文。 [4] 林傳生,(2004),「Matlab之使用與應用」,儒林出版社。 英文部分: [5] Achenbach, J. D. (1973). Wave propagation in elastic solids: North-Holland. [6] Payton, R. G. (1983). Elastic wave propagation in transversely isotropic media: Springer. [7] Osher, S., Cheng, L.-T., Kang, M., Shim, H., and Tsai, Y.-H. (2002). Geometric optics in a phase-space-based level set and Eulerian framework1. Journal of computational physics, 179(2), 622-648. [8] Osher, S. and Sethian, J. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49. [9] Cheng, L.-T., Kang, M., Osher, S., Shim, H., and Tsai, Y.-H. (2004). Reflection in a level set framework for geometric optics. Computer Modeling in Engineering and Sciences, 5(4), 347-360. [10] Qian, J., Cheng, L.-T., and Osher, S. (2003). A level set based Eulerian approach for anisotropic wave propagations. Wave Motions, 37(4), 365-379. [11] Essl, G. (2006). Computation of wave fronts on a disk I: Numerical experiments. Electronic Notes in Theoretical Computer Science, 161, 25-41. [12] Smirnov, V., and Sneddon, I. (1964). A course of higher mathematics: Pergamon. [13] Wu, K.-C. (2000). Extension of Stroh’s formalism to self-similar problems in two- dimensional elastodynamics. Royal Society of London Proceedings Series A, 456, 869-890. [14] Pao, Y.-H., and Gajewski, R. (1977). The generalized ray theory and transient response of layered elastic solids. Physical Acoustics, Principles and Methods, 13, 183-265. [15] Dieulesaint, E., & Royer, D. (1995). Elastic waves in solids: Springer. [16] Ting, T. C. T. (1996). Anisotropic elasticity: theory and application. Oxford University Press. [17] Slawinski, M., Slawinski, R., Brown, R., and Parkin, J. (2000). A generalized form of Snell’s law in anisotropic media. Geophysics, 65, 632. [18] Karrenbach, M. (1960). Velocity and Q in transverse isotropic media. http://sep.stanford.edu/data/media/public/oldreports/sep60/60_21.pdf [19] Essl, G. (2005). Toward the synthesis of wavefront evolution in 2-D. International Computer Music Conference, Barcelona, Spain, September 5-9. [20] Essl, G. (2005). The computational structure of waves on drums for sound synthesis. To appear in Proceedings of Forum Acusticum, Budapest, Hungary, Aug 29-Sep 2. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46796 | - |
dc.description.abstract | 本文發展一建構反射和透射波前的方法,使之能處理二維異向彈性介質中線波源之波傳問題。理論之基礎為利用廣義Snell’s Law中外觀波速在反射(透射)前後保持不變的定律,去求解反射(透射)後,波的射線速度向量。射線速度的數值解可利用外觀波速和一六維特徵值問題的特徵值及其微分組合表達,其與波曲線圖互有對應關係。本文求解的問題有水平、傾斜、正方形及圓形邊界等情況下之反射和透射波前,主要為一次和二次的反射及透射波前曲線建構。 | zh_TW |
dc.description.abstract | A method to deal with the two dimensional wave propagation problem, and to construct the reflective and refractive wave fronts of a line source in anisotropic elastic media is developed in this thesis. The basic theory of this method is to use the generalized Snell’s Law which describes that the apparent wave speed always remains unchanged before or after reflection (refraction). Using this law to trace the energy velocity vectors. And the values of them could be solved from a six-dimensional eigenvalue problem and be presented by the combination of eigenvalue p and its differential. The energy velocity vector is relative to the wavefront curve.
The problems being solved in this thesis are horizontal, inclined, rectangular, and circular geometric boundary. Primarily construct the first and the second reflective and refractive wave fronts. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:41:34Z (GMT). No. of bitstreams: 1 ntu-99-R97543023-1.pdf: 3245838 bytes, checksum: 442e41ccd244db66d6c1fa2d61dd2f12 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘 要 i
Abstract ii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與文獻回顧 2 1.3 本文大綱 4 第二章 波傳分析基本架構 5 2.1 速度曲面、慢度曲面與波前曲面 5 2.2 理論架構 9 2.3 特徵值和特徵向量 13 第三章 反射與透射分析 16 3.1 應用波曲線圖 16 3.2 反射射線與透射射線之分析 20 3.3 在旋轉座標系中的彈性矩陣(Elasticity Matrices) 24 第四章 問題實例 30 4.1 雙材料之半無窮域 30 4.2 傾斜層(Dipping layer) 36 4.3 正方形邊界 41 4.3.1 擬縱波P波的波前 44 4.3.2 擬快橫波S1波的波前 46 4.3.3 擬慢橫波S2波的波前 48 4.4 橢圓邊界 50 4.4.1 等向性材料實例 53 4.4.2 圓形邊界 56 4.5 介質中存在一圓形孔洞 61 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 70 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 異向彈性體內線波源之反射及透射波前的建構 | zh_TW |
dc.title | Construction of Reflective and Refractive Wave Fronts Due to a Line Source in Anisotropic Elastic Media | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭茂坤,張正憲,馬劍清 | |
dc.subject.keyword | 異向彈性力學,波傳,波前,傾斜層, | zh_TW |
dc.subject.keyword | anisotropic elasticity,wave propagation,wave front,dipping layer, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-01-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。