Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宛珊
dc.contributor.authorFu-Ning Yangen
dc.contributor.author楊馥寧zh_TW
dc.date.accessioned2021-06-15T05:41:30Z-
dc.date.available2011-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citation[1] Abad J. D., Garcia M. H., “Discussion of “Efficient algorithm for computing Einstein Integrals” by Junke Guo and Pierre Y. Julien.” J. Hydraul. Eng., ASCE 2006; 132(3): 332-334 (J. Hydraul. Eng., ASCE 2004; 130(12): 1198-1201.
[2] Ancey C., Bohm T., Jodeau M., Frey P., “Statistical description of sediment transport experiments.” Physical Review, 2006; 74(1): 011302(1-14).
[3] Ancey C., Davison A. C., Bohm T., Jodeau M., Frey P., “Entrainment and motion of coarse particles in a shallow water stream down a steep slope.” J. Fluid Mech., 2008; 595: 83-114.
[4] Ancey C., “Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions.” J. Geophysical Research, 2010; 115, F00A11: 1-21.
[5] Beheshti A. A., Ataie-Ashtiani B., “Analysis of threshold and incipient conditions for sediment movement.” Coastal Eng., 2008; 55: 423–430.
[6] Boise Aquatic Sciences Lab:
http://www.fs.fed.us/rm/boise/research/watershed/BAT/index.shtml
[7] Cheng N. S., Chiew Y. M., “Pickup probability for sediment entrainment.” J. Hydraul. Eng., ASCE 1998; 124(2): 232-235.
[8] Cheng N. S., Chiew Y. M., “Analysis of initiation of sediment suspension from bed load.” J. Hydraul. Eng., ASCE 1999; 125(8): 855-861.
[9] Drake T. G., Shreve R. L., Dietrich W. E., Whiting P. J., Leopold L. B., “Bedload transport of fine gravel observed by motion-picture photography.” J. Fluid Mech., 1988; 192: 193-217.
[10] Einstein H. A., “Bed load transport as a probability problem.” Ph.D. thesis, Fed. Inst. of Technol., Zurich, Switzerland, 1937.
[11] Einstein H. A., “Formula for the transportation of bed load.” Trans., ASCE 1942; 107: 561-597.
[12] Einstein H. A., “The bed load function for sediment transportation in open channel flows.” Tech. Bull. 1026, U.S. Department of Agriculture, Washington, D.C., 1950.
[13] Garcia M. H., Parker G., “Entrainment of bed sediment into suspension.” J. Hydraul. Eng., ASCE 1991; 117(4): 414-435.
[14] Garcia M. H., “Sedimentation engineering; processes, measurements, modeling, and practice.” ASCE Manuals and reports on Engineering practice No. 110, 2008.
[15] Laursen E. M., “Pickup probability for sediment entrainment.” J. Hydraul. Eng., ASCE 1999; 125(7): 786-787.
[16] Lisle I. G., Rose C. W., Hogarth W. L., Hairsine P. B., Sander G., Parlange J. Y., “Stochastic sediment transport in soil erosion.” J. Hydrol., 1998; 204: 217–230.
[17] Papanicolaou A. N., “Stochastic considerations in hydraulics- a call for papers.” J. Hydraul. Eng., ASCE 1999; 125(12), 1229–1230.
[18] Papanicolaou A. N., Diplas P., Evaggelopoulos N., Fotopoulos S., “Stochastic incipient motion criterion for spheres under various bed packing conditions.” J. Hydraul. Eng., ASCE 2002; 128(4): 369-380.
[19] Ross S. M., “Introduction to probability models.” Academic Press, San Diego, CA, 2000.
[20] Sun Z., “A stochastic model of sediment interchanges.” Journal of Sediment Research, 1989-03: 1-9.
[21] Sun Z., Zhu Y., “A study on Einstein’s bedload transport formula.” Journal of Sediment Research, 1991-01: 20-26.
[22] Sun Z., Donahue J., “Statistically derived bedload formula for any fraction of non-uniform sediment.” J. Hydraul. Eng., ASCE 2000; 126(2): 105-111.
[23] Van Rijn L. C., “Sediment transport, Part I: Bed load transport.” J. Hydraul. Eng., ASCE 1984; 110(10): 1431-1456.
[24] Van Rijn L. C., “Sediment transport, Part II: Suspended load transport.” J. Hydraul. Eng., ASCE 1984; 110(11): 1613–1641.
[25] World of Earth Science. “Suspended Load.” 2003. Encyclopedia.com.:
http://www.encyclopedia.com
[26] Wu F. C., Chou Y. J., “Rolling and lifting probabilities for sediment entrainment.” J. Hydraul. Eng., ASCE 2003; 129(2): 110-119.
[27] Wu F. C., Lin Y. C., “Pickup probability of sediment under log-normal velocity distribution.” J. Hydraul. Eng., ASCE 2002; 128(4): 438-442.
[28] Wu F. C., Yang K. H., “A stochastic partial transport model for mixed-size sediment: Application to assessment of fractional mobility.” Water Resources Res., 2004; 40, W04501, doi:10.1029/2003WR002256.
[29] Wu F. C., Yang K. H., “Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures.” J. Hydraul. Eng., ASCE 2004; 130(12): 1187-1197.
[30] Yang F., Liu X., Cao S., Huang E., “Bed load transport rates during scouring and armoring processes.”, J. Mountain Science, 2010; 7(3): 215-225.
[31] Yang F., Liu X., Cao S., Huang E., Yang K., “A stochastic fraction bedload transport rate model for non-uniform sediment.” Electric Technology and Civil Engineering (ICETCE), 2011; 5702-5705.
[32] Yen B. C., “Stochastic inference to sediment and fluvial hydraulics.” J. Hydraul. Eng., ASCE 2002; 128(4), 365-367.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46787-
dc.description.abstract為描述泥沙運動過程的間歇性特點,本研究應用序率方法,致力提出一周全的馬可夫鏈模式,以模擬水流中複雜的泥沙交換過程。我們著重於二部份,一為連續時間馬可夫鏈的應用,另一為三個狀態輸砂模式的建立。連續時間的馬可夫鏈能展現泥沙運動連續發生之行為過程,為確立連續時間馬可夫鏈應用於泥沙交換問題的數學處理方式,首先以一具兩個狀態的馬可夫鏈模擬泥沙起動過程,釐清連續時間馬可夫鏈之混淆定義;隨後,延續所確立之連續時間馬可夫鏈,提出三個狀態、連續時間之馬可夫輸砂模式,以描述泥沙運動中靜止、推移和懸移的三種狀態,由於一般推移質輸砂模式只考慮底床之泥沙交換,忽略懸移質對推移質輸砂量可能之影響,本研究增加懸移質之考慮,描述水流底部泥沙在三種不同狀態下交換之完整過程,進而發展一更準確之推移質輸砂模式。此連續時間、三個狀態之馬可夫鏈輸砂模式中,因其連續時間馬可夫鏈的應用,能夠求得狀態轉移機率對時間的函數之解析解,故不僅能推算達穩定平衡之推移質輸砂率,亦能求得達穩定狀態之前隨時間變換之輸砂率;另外,三個狀態之輸砂模式能夠表示一河段受推移質或懸移質的支配情形,以及三狀態泥沙的數量分佈。針對所提出的推移質輸砂模式所作分析驗證,其結果證明了此模式具有一定程度的有效性。zh_TW
dc.description.abstractBased on the stochastic approach, a comprehensive Markov chain model for the sediment interchange process is performed in this study. The continuous-time Markov process is appropriate for describing the continuous behavior of particle movement under steady flow conditions. A certain mathematical formulation in employing the continuous-time Markov process is constructed by the presentation of a two-state Markov model for sediment entrainment. Then we accordingly propose a three-state continuous-time Markov model that completely simulates sediment exchange and thus can quantify the bedload transport rate more accurately. The three-state Markov model describes the particle movement across three motion states, i.e. bed material, bedload, and suspended load. We have added a third state to account for the influence of suspended load, which is different from general bedload transport studies. With the employment of the continuous-time Markov model, the bedload transport capacity in the long run and the varying transport rates with time before the steady state can be derived. On the other hand, the three-state model exhibits that the flow is subject to the bedload or suspended load and further the actual sediment distribution in three motion states. The proposed model is validated against the natural river data. The comparison has shown a reasonably good agreement and thus the validity is confirmed to some extent.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:41:30Z (GMT). No. of bitstreams: 1
ntu-100-R98521316-1.pdf: 1713152 bytes, checksum: f08170c70aabf9585c1b0f1a4968b200 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 ......................................................................................ii
Abstract ...............................................................................iii
Table of Contents..................................................................iv
List of Figures and Tables..................................................... vi
Chapter 1 Introduction ..........................................................1
1.1 Problem Statement.......................................................... 1
1.2 Objectives of Study.......................................................... 3
1.3 Overview of Thesis.......................................................... 5
Chapter 2 Literature Review ...................................................6
Chapter 3 Two-State Continuous-Time Markov Model of Bedload Sediment Entrainment .........................................................................11
3.1 Model Development ....................................................... 11
3.1.1 Two-State Continuous-Time Markov Chain ................. 11
3.1.2 Transition Probability Function .................................... 15
3.1.3 Limiting Transition Probability of Steady State ............. 17
3.2 Comparison with Other Models ...................................... 17
3.2.1 Outline of Three Markov Models for Sediment Entrainment
............................................................................................. 17
3.2.2 Discussion about Results of Three Models ................... 19
3.2.3 Discussion about Entrainment Probability and Transition
Rate ...................................................................................... 21
Chapter 4 Three-State Continuous-Time Markov Model of
Bedload Transport ................................................................. 25
4.1 Model Development ......................................................... 25
4.1.1 Three-State Continuous-Time Markov Chain ................ 25
4.1.2 Transition Probability Function ..................................... 26
4.1.3 Limiting Transition Probability of Steady State .............. 28
4.1.4 Bedload Transport Rate ................................................ 29
4.2 Determination of Parameters ........................................... 32
4.3 Model Results and Discussions ........................................ 35
4.3.1 Change of Transition Probability Function with Time ......35
4.3.2 Influence of Parameters on Limiting Probability ..............38
4.3.3 Special Case of the Three-state Model .......................... 40
4.3.4 Change of Bedload Transport Rate with Time ................ 42
4.3.5 Influence of Parameters on Bedload Transport Rate ....... 44
4.4 Summary........................................................................... 46
Chapter 5 River Data Validation of Three-State Continuous-Time
Bedload Transport Model......................................................... 49
5.1 Summary of River Data ..................................................... 49
5.2 Model Calibration ............................................................. 52
5.3 Model Validation ............................................................... 55
5.4 Discussion......................................................................... 58
Chapter 6 Summary and Conclusions .......................................60
References ...............................................................................63
Appendix .................................................................................66
A.1 List of Notation ................................................................. 66
A.2 Table of River Data ............................................................ 69
A.3 Table of Computed Data in Model Validation ..................... 76
dc.language.isoen
dc.subject推移質zh_TW
dc.subject序率模式zh_TW
dc.subject馬可夫鏈zh_TW
dc.subject輸砂模式zh_TW
dc.subject泥沙交換zh_TW
dc.subjectsediment transporten
dc.subjectsediment interchangeen
dc.subjectstochastic modelen
dc.subjectMarkov processen
dc.subjectbedload transporten
dc.title以連續時間馬可夫鏈建立之序率輸砂模式zh_TW
dc.titleSTOCHASTIC MODELING OF BEDLOAD TRANSPORT BY THE CONTINUOUS-TIME MARKOV CHAIN PROCESSen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳富春,游景雲
dc.subject.keyword序率模式,馬可夫鏈,輸砂模式,泥沙交換,推移質,zh_TW
dc.subject.keywordstochastic model,Markov process,bedload transport,sediment transport,sediment interchange,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2011-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved