請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭克聲 | |
| dc.contributor.author | Yi-Ting Lien | en |
| dc.contributor.author | 連以婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:41:25Z | - |
| dc.date.available | 2011-02-26 | |
| dc.date.copyright | 2010-08-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | 1. 李晏全(2006),『石門水庫枯水期月與季入流量預報之研究』,國立成功大學水利及海洋工程研究所碩士論文。
2. 陳昶憲、楊朝仲(1998),「時序類神經集水區洪水預報模式」,台灣水利季刊,第 40卷,第1期,pp. 84-98。 3. 游保杉、曾財益、楊道昌、蔡長泰(1994),「八掌溪即時河川流量預報模式之初步研究」,台灣水利季刊,第42卷,第3期,pp. 64-78。 4. 黃怡綺(2007),『時序分析法應用於水庫入流量模擬之研究-以武界水庫為例』, 國立中興大學水土保持學研究所碩士論文。 5. 虞國興、莊明德(1992),「台灣乾旱特性之研究」,台灣水利,第40卷,第4期,pp. 20-33。 6. Bärdossy, A., 2007. Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, Vol. 11, pp. 703-710. 7. Beven, K. and Binley, A., 1992. The future of distributed models - model calibration and uncertainty prediction. Hydrological Processes, Vol. 6, pp. 279-298. 8. Beven, K. and Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, Vol. 249, pp. 11-29. 9. Cover, K. A. and Unny, T. E., 1986. Application of computer intensive statistics to parameter uncertainty in streamflow synthesis. Water Resources Bulletin, Vol. 22, No. 3, pp. 495-507. 10. Duan, Q., Sorooshian, S., and Gupta, V., 1992. Effective and efficient global optimisation for conceptual rainfall-runoff model. Water Resource Res., Vol. 28, pp. 1015-1031. 11. Efron, B., 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics, Vol. 7, pp. 1-26. 12. EPA, U. S., 1997. Guiding principles for Monte Carlo analysis. Risk Assessment Forum. Washington, DC, USA. 13. Kuczera, G., and Mroczkowski, M., 1998. Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resources Research, Vol. 34, No. 6, pp. 1481-1489. 14. Li, Z., Shao, Q., Xu, Z., and Cai, X., 2010. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: a case study of SWAT model applied to Yingluoxia watershed in northwest China. Journal Hydrology. doi:10.1016/j.jhydrol.2010.01.025 15. Melching, C. S. (1995). Reliability estimation. In V. P. Singh (Ed.), Computer models of watershed hydrology. Water Resources Publishers. USA. 16. Morgan, M. G., and Henrion, M., 1990. Uncertainty: a guide to the treatment of uncertainty in quantitative policy and risk analysis. Cambridge University Press. New York. 17. Tasker, G. D., and Dunne, P., 1997. Bootstrap position analysis for forecasting low flow frequency. Journal Water Resource Plan. Manage., Vol. 123, No. 6, pp. 359-367. 18. Vogel, R. M., and Shallcross, A. L., 1996. The moving blocks boostrap versus parametric time series models. Water Resource Research, Vol. 32, No. 6, pp. 1875-1882. 19. Wagener, T., Gupta, H. V., and Wheater, H. S., 2004. Rainfall-runoff modelling in gauged and ungauged catchments. Imperial College Press, London. 20. Zucchini, W., and Adamson, P. T., 1988. On the application of the bootstrap to assess the risk of deficient annual inflows to a reservoir. Water Resource Management, Vol. 2, pp. 245-254. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46777 | - |
| dc.description.abstract | 水文過程屬於隨機現象,在水文模式建立和預測上不可避免的會存在不確定性。不確定性主要是因為水文現象在空間和時間上有很高的變異性(complexity in spatial and temporal variations),導致在資料的蒐集與模擬過程中,會與真實現象有所差異,因而產生不確定性。不確定性在整個預測過程中主要分成三類,為資料不確定性(Data uncertainty)、模式不確定性(Model structural )和參數不確定性(Model specification uncertainty or Parameter uncertainty),此三種不確定性會影響水文模式的表現與預測的準確度,整體的不確定性可藉由評估指標來量化,如均方根誤差(Root mean square error, RMSE)、效率係數(Coefficient of efficiency, CE)和持續係數(Coefficient of persistence, CP)。不確定性分析需要大量數據來建立,為了克服資料不足的問題,可藉由Bootstrap(拔靴法)產生與實際資料特性有關的大量數據,再進行參數推估與計算評估指標以分析不確定性。
本研究資料皆由AR(Autoregressive processes)模式繁衍而來,首先探討資料在不同變異度(σx)與模式有錯誤時,參數與評估指標(RMSE、CE與CP)不確定性表現。結果顯示,同一模式不同變異度所繁衍的資料,推估之參數結果接近,評估指標除了RMSE有差異外,CE與CP結果接近,RMSE除以σx後值也相近。此三指標在有無模式不確定下CP值差異最大,其餘兩者差異皆很小。 同一筆資料帶入不同模式,其CE與CP關係為線性正相關,比例關係與ρ1有關,當ρ1越大,以CE為y軸,CP為x軸之斜率越小,故可建立不同ρ1之CE與CP線性關係。不同資料以AR(1)模式配置,CE、CP呈二次曲線關係,兩者皆為一階相關係數ρ1的函數,本研究並提出以AR(1)模式所計算之CE與CP二次曲線為門檻值。此外本研究亦發現Bootstrap方法可用來模擬真實資料的不確定性,因此可結合Bootstrap方法與CE、CP指標,提出一可用來評估實際資料的不確定性方法。 | zh_TW |
| dc.description.abstract | The uncertainties in constructing hydrological model are inevitable. They are mainly resulted from the complexity in spatial and temporal variations. To describe uncertainty in modeling, the uncertainty can be categorized into data uncertainty, model structural and parameter uncertainty. The overall uncertainty can be quantified by some evaluation indices, for example, Root mean square error (RMSE), Coefficient of efficiency (CE) and Coefficient of persistence (CP). Since the analysis of uncertainty is based on numerous numerical data, the Bootstrap method is used to generate a bootstrap sample that reflects characteristics of reality, then parameters and evaluation indices are estimated and calculated to describe uncertainty.
The data of this research is generated from Autoregressive process (AR) modeling. The main attributes of this research can be categorized into three. Firstly, parameters and evaluation index (RMSE, CE and CP) are described in the same model with different standard deviation (σx) and under circumstances when model poses uncertainty. The results shown the variation of data have no influence on parameter and evaluation index CE and CP inferring process. Similarly, the same effect is shown when RMSE is divided by σx. Among these three indicators, the results of CP shown the largest difference when the model poses uncertainty. The relationship between CE and CP in the same dataset is calibrated by AR(1) model which is uniquely dependent on ρ1 (the first order correlation coefficient). The slope with CE for the y-axis and CP for the x-axis is identified to be decrease as ρ1 increase. Therefore the relationship between CE and CP in different ρ1 is formulated. The relationship between CE and CP in different datasets calibrated by AR(1) model is a second order polynomial function. Both CE and CP are functions of the first order correlation coefficient. This study strongly recommends that the second order polynomial function of CE and CP in AR(1) model can be used as a threshold in assessing the performance of the model. The study also shown Bootstrap method can be applied to simulate the uncertainty of the real data. Therefore Bootstrap method, CE and CP can be collaborating combined to assess the uncertainty in real data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:41:25Z (GMT). No. of bitstreams: 1 ntu-99-R97622003-1.pdf: 5538354 bytes, checksum: 067e30f1fbe8997423760ce2550d57b3 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 序論 1 1.1 研究動機與目的 1 1.2 研究架構 2 第二章 文獻回顧與相關理論 4 2.1 不確定性探討 4 2.2 時間序列 5 2.2.1 模式介紹 5 2.2.2 模型(參數)估計 7 2.2.3 時間序列應用於水文模式之研究 9 2.3 Bootstrap(拔靴法) 10 2.4 模式評估指標 11 第三章 AR模式參數與評估指標不確定性研究 13 3.1 資料模擬方法 13 3.2 資料變異度對參數不確定性與評估指標的影響 15 3.2.1 參數分佈 15 3.2.2 評估指標 19 3.2.3 小結 20 3.3 模式不確定性對評估指標的影響 28 3.3.1 資料模擬 28 3.3.2 評估指標之不確定性 28 3.3.3 評估指標相關性 28 第四章 CE與CP的關係探討 33 4.1 序列長度改變對AR(1)與AR(2)模式CE與CP關係的影響 33 4.1.1 序列模擬方法 33 4.1.2 AR(1)序列結果 35 4.1.3 AR(2)序列結果 35 4.1.4 AR(1)序列與AR(2)序列結果比較 41 4.2不同樣本配置AR(1)模式參數與CE、CP的關係 41 4.2.1 序列模擬方法與結果 41 4.2.2 CE、CP與參數φ之公式推導 47 4.3 相同樣本配置不同模式CE與CP的關係 49 4.3.1 序列模擬結果 50 4.3.2 公式推導 50 4.4 CE與CP門檻值訂定 54 第五章 以Bootstrap方法探討不確定性 57 5.1 模擬與取樣方法 57 5.2 參數推估 59 5.2.1 AR(2)結果 59 5.2.2 AR(1)結果 60 5.3 評估指標結果 65 5.4 結合Bootstrap與評估指標建立一可行的評估方法 68 第六章 結論與建議 72 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 拔靴法 | zh_TW |
| dc.subject | 不確定性分析 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 模式評估指標 | zh_TW |
| dc.subject | Uncertainty | en |
| dc.subject | Evaluation index | en |
| dc.subject | Time series | en |
| dc.subject | Bootstrap | en |
| dc.title | 水文模式之參數不確定性分析 | zh_TW |
| dc.title | Assessing Parameter Uncertainties in Hydrological Modeling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞賢,黃文政,王藝峰 | |
| dc.subject.keyword | 不確定性分析,模式評估指標,時間序列,拔靴法, | zh_TW |
| dc.subject.keyword | Uncertainty,Evaluation index,Time series,Bootstrap, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
