請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46710完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智芬(Zee-Fen Chang),張富雄(Fu-Hsiung Chang) | |
| dc.contributor.author | Chia-Yun Chang | en |
| dc.contributor.author | 張家芸 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:24:47Z | - |
| dc.date.available | 2010-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-18 | |
| dc.identifier.citation | [1]R.L. Patterson, D.B. van Rossum, N. Nikolaidis, D.L. Gill, S.H. Snyder, Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 30 (2005) 688-697.
[2]H.J. Mackay, C.J. Twelves, Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 7 (2007) 554-562. [3]G. Martiny-Baron, D. Fabbro, Classical PKC isoforms in cancer. Pharmacol Res 55 (2007) 477-486. [4]C. Rosse, M. Linch, S. Kermorgant, A.J. Cameron, K. Boeckeler, P.J. Parker, PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11 (2010) 103-112. [5]N. Saito, Y. Shirai, Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem 132 (2002) 683-687. [6]N. Bacher, Y. Zisman, E. Berent, E. Livneh, Isolation and characterization of PKC-L, a new member of the protein kinase C-related gene family specifically expressed in lung, skin, and heart. Mol Cell Biol 11 (1991) 126-133. [7]S. Osada, K. Mizuno, T.C. Saido, K. Suzuki, T. Kuroki, S. Ohno, A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol Cell Biol 12 (1992) 3930-3938. [8]J. Yang, R.W. Tsien, Enhancement of N- and L-type calcium channel currents by protein kinase C in frog sympathetic neurons. Neuron 10 (1993) 127-136. [9]C. Larsson, Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18 (2006) 276-284. [10]T.J. Kamp, J.W. Hell, Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87 (2000) 1095-1102. [11]S. Nakashima, Protein kinase C alpha (PKC alpha): regulation and biological function. J Biochem 132 (2002) 669-675. [12]E.M. Griner, M.G. Kazanietz, Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7 (2007) 281-294. [13]U. Blank, G. Karlsson, S. Karlsson, Signaling pathways governing stem-cell fate. Blood 111 (2008) 492-503. [14]Y. Nishizuka, Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9 (1995) 484-496. [15]S.J. Collins, The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70 (1987) 1233-1244. [16]R. Hass, H. Gunji, R. Datta, S. Kharbanda, A. Hartmann, R. Weichselbaum, D. Kufe, Differentiation and retrodifferentiation of human myeloid leukemia cells is associated with reversible induction of cell cycle-regulatory genes. Cancer Res 52 (1992) 1445-1450. [17]H.H. Ishii, G.C. Gobe, Epstein-Barr virus infection is associated with increased apoptosis in untreated and phorbol ester-treated human Burkitt's lymphoma (AW-Ramos) cells. Biochem Biophys Res Commun 192 (1993) 1415-1423. [18]C.D. Kang, B.K. Lee, K.W. Kim, C.M. Kim, S.H. Kim, B.S. Chung, Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem Biophys Res Commun 221 (1996) 95-100. [19]H. Kizaki, T. Tadakuma, C. Odaka, J. Muramatsu, Y. Ishimura, Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J Immunol 143 (1989) 1790-1794. [20]L. Van Aelst, C. D'Souza-Schorey, Rho GTPases and signaling networks. Genes Dev 11 (1997) 2295-2322. [21]A.B. Jaffe, A. Hall, Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21 (2005) 247-269. [22]A.E. Karnoub, M. Symons, S.L. Campbell, C.J. Der, Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res Treat 84 (2004) 61-71. [23]Y. Zheng, Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26 (2001) 724-732. [24]Z.F. Chang, H.H. Lee, RhoA signaling in phorbol ester-induced apoptosis. J Biomed Sci 13 (2006) 173-180. [25]J.M. Lai, C.L. Hsieh, Z.F. Chang, Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 116 (2003) 3491-3501. [26]J.M. Lai, C.Y. Lu, H.F. Yang-Yen, Z.F. Chang, Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochem J 359 (2001) 227-233. [27]Y.C. Chang, H.H. Lee, Y.J. Chen, G.M. Bokoch, Z.F. Chang, Contribution of guanine exchange factor H1 in phorbol ester-induced apoptosis. Cell Death Differ 13 (2006) 2023-2032. [28]Y. Ren, R. Li, Y. Zheng, H. Busch, Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 273 (1998) 34954-34960. [29]J. Birkenfeld, P. Nalbant, S.H. Yoon, G.M. Bokoch, Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol 18 (2008) 210-219. [30]M. Krendel, F.T. Zenke, G.M. Bokoch, Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4 (2002) 294-301. [31]K. Riento, A.J. Ridley, Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4 (2003) 446-456. [32]B.K. Mueller, H. Mack, N. Teusch, Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4 (2005) 387-398. [33]M. Amano, K. Chihara, N. Nakamura, T. Kaneko, Y. Matsuura, K. Kaibuchi, The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 274 (1999) 32418-32424. [34]K. Fujisawa, A. Fujita, T. Ishizaki, Y. Saito, S. Narumiya, Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J Biol Chem 271 (1996) 23022-23028. [35]R. Dvorsky, L. Blumenstein, I.R. Vetter, M.R. Ahmadian, Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem 279 (2004) 7098-7104. [36]M.L. Coleman, E.A. Sahai, M. Yeo, M. Bosch, A. Dewar, M.F. Olson, Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3 (2001) 339-345. [37]M. Sebbagh, C. Renvoize, J. Hamelin, N. Riche, J. Bertoglio, J. Breard, Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3 (2001) 346-352. [38]M. Sebbagh, J. Hamelin, J. Bertoglio, E. Solary, J. Breard, Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201 (2005) 465-471. [39]J. Feng, M. Ito, Y. Kureishi, K. Ichikawa, M. Amano, N. Isaka, K. Okawa, A. Iwamatsu, K. Kaibuchi, D.J. Hartshorne, T. Nakano, Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 274 (1999) 3744-3752. [40]S. Etienne-Manneville, Actin and microtubules in cell motility: which one is in control? Traffic 5 (2004) 470-477. [41]A. Hall, The cytoskeleton and cancer. Cancer Metastasis Rev 28 (2009) 5-14. [42]O.C. Rodriguez, A.W. Schaefer, C.A. Mandato, P. Forscher, W.M. Bement, C.M. Waterman-Storer, Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5 (2003) 599-609. [43]T.D. Pollard, J.A. Cooper, Actin, a central player in cell shape and movement. Science 326 (2009) 1208-1212. [44]M. Vicente-Manzanares, X. Ma, R.S. Adelstein, A.R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10 (2009) 778-790. [45]A. Hall, Rho GTPases and the actin cytoskeleton. Science 279 (1998) 509-514. [46]N. Wettschureck, S. Offermanns, Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80 (2002) 629-638. [47]J. Feng, M. Ito, K. Ichikawa, N. Isaka, M. Nishikawa, D.J. Hartshorne, T. Nakano, Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 274 (1999) 37385-37390. [48]M. Amano, M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, K. Kaibuchi, Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271 (1996) 20246-20249. [49]S. Honore, E. Pasquier, D. Braguer, Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62 (2005) 3039-3056. [50]T. Mitchison, M. Kirschner, Dynamic instability of microtubule growth. Nature 312 (1984) 237-242. [51]T. Horio, H. Hotani, Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321 (1986) 605-607. [52]C.E. Walczak, Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol 12 (2000) 52-56. [53]N.K. Pryer, R.A. Walker, V.P. Skeen, B.D. Bourns, M.F. Soboeiro, E.D. Salmon, Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. J Cell Sci 103 ( Pt 4) (1992) 965-976. [54]N. Gustke, B. Trinczek, J. Biernat, E.M. Mandelkow, E. Mandelkow, Domains of tau protein and interactions with microtubules. Biochemistry 33 (1994) 9511-9522. [55]J. Howard, A.A. Hyman, Microtubule polymerases and depolymerases. Curr Opin Cell Biol 19 (2007) 31-35. [56]J. Al-Bassam, N.A. Larsen, A.A. Hyman, S.C. Harrison, Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure 15 (2007) 355-362. [57]L. Cassimeris, The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14 (2002) 18-24. [58]S.M. Hanash, J.R. Strahler, R. Kuick, E.H. Chu, D. Nichols, Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem 263 (1988) 12813-12815. [59]P.A. Curmi, C. Nogues, S. Lachkar, N. Carelle, M.P. Gonthier, A. Sobel, R. Lidereau, I. Bieche, Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 82 (2000) 142-150. [60]D.K. Price, J.R. Ball, Z. Bahrani-Mostafavi, J.C. Vachris, J.S. Kaufman, R.W. Naumann, R.V. Higgins, J.B. Hall, The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer. Cancer Invest 18 (2000) 722-730. [61]P. Holmfeldt, M.E. Sellin, M. Gullberg, Predominant regulators of tubulin monomer-polymer partitioning and their implication for cell polarization. Cell Mol Life Sci 66 (2009) 3263-3276. [62]B. Howell, N. Larsson, M. Gullberg, L. Cassimeris, Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 10 (1999) 105-118. [63]N. Larsson, B. Segerman, H.M. Gradin, E. Wandzioch, L. Cassimeris, M. Gullberg, Mutations of oncoprotein 18/stathmin identify tubulin-directed regulatory activities distinct from tubulin association. Mol Cell Biol 19 (1999) 2242-2250. [64]B. Howell, H. Deacon, L. Cassimeris, Decreasing oncoprotein 18/stathmin levels reduces microtubule catastrophes and increases microtubule polymer in vivo. J Cell Sci 112 ( Pt 21) (1999) 3713-3722. [65]N. Larsson, B. Segerman, B. Howell, K. Fridell, L. Cassimeris, M. Gullberg, Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities. J Cell Biol 146 (1999) 1289-1302. [66]F.J. Moreno, M. Bagnat, F. Lim, J. Avila, OP18/stathmin binds near the C-terminus of tubulin and facilitates GTP binding. Eur J Biochem 262 (1999) 557-562. [67]N. Larsson, U. Marklund, H.M. Gradin, G. Brattsand, M. Gullberg, Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 17 (1997) 5530-5539. [68]T. Wittmann, G.M. Bokoch, C.M. Waterman-Storer, Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 279 (2004) 6196-6203. [69]H. Daub, K. Gevaert, J. Vandekerckhove, A. Sobel, A. Hall, Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276 (2001) 1677-1680. [70]K. Kaibuchi, S. Kuroda, M. Amano, Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68 (1999) 459-486. [71]F.C. Yang, S.J. Atkinson, Y. Gu, J.B. Borneo, A.W. Roberts, Y. Zheng, J. Pennington, D.A. Williams, Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci U S A 98 (2001) 5614-5618. [72]I.A. Leighton, P. Curmi, D.G. Campbell, P. Cohen, A. Sobel, The phosphorylation of stathmin by MAP kinase. Mol Cell Biochem 127-128 (1993) 151-156. [73]J.M. Lai, S. Wu, D.Y. Huang, Z.F. Chang, Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13- acetate-induced apoptotic cells. Mol Cell Biol 22 (2002) 7581-7592. [74]P. Niethammer, P. Bastiaens, E. Karsenti, Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303 (2004) 1862-1866. [75]C.C. Leslie, Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot Essent Fatty Acids 70 (2004) 373-376. [76]M.A. Gijon, C.C. Leslie, Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol 65 (1999) 330-336. [77]Z.H. Qiu, C.C. Leslie, Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem 269 (1994) 19480-19487. [78]D.B. van Rossum, R.L. Patterson, PKC and PLA2: probing the complexities of the calcium network. Cell Calcium 45 (2009) 535-545. [79]Q. Li, V. Subbulakshmi, C.M. Oldfield, R. Aamir, C.M. Weyman, A. Wolfman, M.K. Cathcart, PKCalpha regulates phosphorylation and enzymatic activity of cPLA2 in vitro and in activated human monocytes. Cell Signal 19 (2007) 359-366. [80]Z. Griger, E. Payer, I. Kovacs, B.I. Toth, L. Kovacs, S. Sipka, T. Biro, Protein kinase C-beta and -delta isoenzymes promote arachidonic acid production and proliferation of MonoMac-6 cells. J Mol Med 85 (2007) 1031-1042. [81]H. Mischak, J.H. Pierce, J. Goodnight, M.G. Kazanietz, P.M. Blumberg, J.F. Mushinski, Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268 (1993) 20110-20115. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46710 | - |
| dc.description.abstract | Phorbol-12-myristate-13-acetate(PMA)是一種可活化PKC isozymes的酯化合物。過去的研究發現,血球前驅細胞D2受到PMA刺激時,會誘導半數細胞維持懸浮狀態,伴隨microtubules瓦解,使GEF-H1均勻散佈在細胞質中活化RhoA/ROCK的訊息傳遞,引發細胞皺縮及凋亡。另外半數細胞則進行貼附及分化,並有聚集成束的microtubules結合GEF-H1,而降低細胞中RhoA的活性。因此,D2細胞在PMA刺激下,其microtubules狀態及RhoA活性的不同,對於細胞走向分化或凋亡扮演決定性的角色。
本篇研究旨在探討PMA活化的PKC訊息傳遞,如何調控D2細胞中myosin light chain(MLC)磷酸化引發的細胞皺縮與microtubule的穩定狀態。PMA誘發的懸浮細胞具很強的MLC磷酸化,且伴隨聚集在細胞核周圍的現象。利用各種不同的PKC抑制劑,發現PKC α和β isoform均參與ROCK調控的MLC磷酸化增強及聚集。過去的研究指出,在PMA誘發的懸浮細胞與未處理的細胞中,都具有高的RhoA活性,暗示著懸浮細胞中PKC的活化,並非透過RhoA活性的上升,而更增加ROCK活性以調控MLC磷酸化造成細胞皺縮。我的研究發現arachidonic acid(AA)的刺激在in vitro可造成ROCK更強的活化,且當D2受AA刺激時同樣可以引發細胞皺縮,表示PMA活化的PKC訊息可能藉由AA在細胞中的釋放,而活化ROCK引發細胞皺縮。 Op18為具瓦解microtubules能力的蛋白,在Op18上具有四個serine磷酸化位點,且磷酸化會使Op18失去瓦解microtubules的能力。實驗結果顯示,PMA誘發貼附的細胞會呈現伸展的型態且有高量的Op18磷酸化,而PMA活化的PKC訊息傳遞,會經MEK/MAPK路徑,影響細胞伸展及Op18磷酸化。另外,抑制PKC的活性會改變Op18磷酸化的情形。我也利用二維電泳進一步分析懸浮及貼附細胞中Op18磷酸化的情形,發現懸浮細胞的高度磷酸化Op18(phospho-serine 16,25,38,63)有減少的現象;相反地,在貼附細胞則有上升的情況。由於Op18磷酸化的現象與microtubule的穩定狀態具相關性,且實驗結果顯示,在D2細胞中表現持續性非活化的 Op18-4E可促進PMA誘發細胞的貼附,表示細胞內具高度磷酸化的Op18有助於增加microtubule的穩定度,進而使細胞在PMA刺激下較容易進行貼附。因此,PKC調控Op18的磷酸化會藉由影響microtubule dynamics而促使細胞選擇不同的命運。 總結以上,PMA活化不同的PKC isoforms訊息路徑而影響細胞中MLC和Op18磷酸化的差異,藉此調控actomyosin及microtubule的動態變化而決定細胞命運的走向。 | zh_TW |
| dc.description.abstract | Phorbol-12-myristate-13-acetate (PMA) is a potent activator of protein kinase C (PKC) isozymes. In the case of erythroblastic D2 cells, PMA treatment induces half of cells remaining in suspension, accompanied by microtubule collapse to release GEF-H1 into cytosol. Elevated GEF-H1/RhoA/ROCK signaling thus contributes to myosin- mediated contraction followed by apoptosis. The other population becomes adherent and differentiated with well-organized microtubules sequestering GEF-H1/RhoA signaling. Thus, RhoA activity and differential microtubule structure play important roles in D2 cell fate determination in response to PMA.
In this study, I aimed to clarify how PKC signalings differently regulate myosin light chain (MLC)-mediated cell contraction and microtubule stability in D2 cells upon PMA stimulation. In PMA-treated suspension cells, enhanced phosphorylation of MLC was specifically aggregated at the perinuclear region. By using various PKC inhibitors, PKC was found to be involved in ROCK-mediated MLC phosphorylation and aggregation. Recently, we have shown that comparably high RhoA activity is maintained both in non-treated and PMA-induced suspension cells, indicating PKC activation furthered ROCK-mediated MLC phosphorylation and contractility regardless of RhoA activity. Intriguingly, arachidonic acid (AA) can further activate ROCK independent of RhoA in vitro. In D2 cells, AA stimulation induced cell contraction similar to PMA treatment, indicating PKC effect on AA release for ROCK activation upon PMA stimulation. Op18 functions as a microtubule destabilizer and its phosphorylation at four serine residues results in losing microtubule destabilizing activity. PMA treatment significantly induced cell spreading and Op18 phosphorylation in adherent cells. PKC downstream MEK/MAPK signaling was involved in PMA-induced cell spreading and Op18 phosphorylation. In particular, inhibition of PKC decreased phosphorylation status of Op18. By using 2-D electrophoresis to analyze phosphorylation status of Op18, highly phosphorylated form of Op18 was decreased in suspension cells but increased in adherent cells upon PMA stimulation. Furthermore, expression of Op18-4E, a constitutively inactive form of Op18, that stabilizes microtubule, also promoted cell adhesion under PMA stimulus. Thus, PKC-mediated Op18 phosphorylation influences microtubule dynamics and cell fate decision. In summary, distinct PKC isoforms differentially lead to phosphorylation of MLC and Op18 to regulate actomyosin and microtubule dynamics, thus governing cell fate in response to PMA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:24:47Z (GMT). No. of bitstreams: 1 ntu-99-R97442009-1.pdf: 2666629 bytes, checksum: 251df9929c3210f46578288be5f5af2f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書............................................I
誌謝......................................................II 中文摘要.................................................III 英文摘要.................................................IV 緒論......................................................1 實驗材料與方法...........................................10 實驗結果.................................................19 討論.....................................................27 圖表.....................................................29 參考文獻.................................................43 | |
| dc.language.iso | zh-TW | |
| dc.subject | Op18 | zh_TW |
| dc.subject | PMA | zh_TW |
| dc.subject | PKC | zh_TW |
| dc.subject | MLC phosphorylation | zh_TW |
| dc.subject | microtubule | zh_TW |
| dc.title | 細胞骨架調控影響酯化合物誘發細胞凋亡與分化之機制探討 | zh_TW |
| dc.title | Cytoskeleton regulation in phorbol ester-induced apoptosis and differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,張富雄(fhchang@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen Lee),李明學(Ming-Hsueh Lee) | |
| dc.subject.keyword | PMA,PKC,MLC phosphorylation,microtubule,Op18, | zh_TW |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
