Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹恆偉
dc.contributor.authorKuo-Chin Jongen
dc.contributor.author鐘國晉zh_TW
dc.date.accessioned2021-06-15T05:24:35Z-
dc.date.available2015-07-30
dc.date.copyright2010-07-30
dc.date.issued2010
dc.date.submitted2010-07-17
dc.identifier.citation[1] G. Keiser, FTTX concepts and applications, John Wiley & Sons, 2006.
[2] C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek and E. Burrows, “Simple multichannel optical equalizer mitigating
intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol., vol. 22, pp. 249-256, Jan. 2004.
[3] A. S. Tanenbaum, Computer networks 4th edition, Prentice Hall PTR, 2003.
[4] D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss
and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol., vol. 22, pp. 294-304, Jan. 2004.
[5] C. L. Yang, S. L. Lee, and J. Wu, “Optical isolator based modules for monitoring DWDM tunable lasers,” J. Opt. Netw., vol. 3, pp. 452–463, Jun. 2004.
[6] M. Imaki, S. Yamamoto, M. Sato, Y. Nishimura, K. Masuda, S. Takagi, A. Adachi, J. Yamashita, and Y. Hirano, “Wideband athermal wavelength monitor integrated wavelength temperature-tunable DFB-LD module,” Electron. Lett., vol. 37, pp. 1035–1036, Aug. 2001.
[7] http://documents.exfo.com/appnotes/anote171-ang.pdf
[8] L. K. Chen, M. H. Cheung, C. K. Chan and F. Tong, “Performance monitoring in transparent reconfigurable WDM networks,” Acta Optica Sinica, vol. 23, pp. 689-690, Sep. 2003.
[9] J. H. Lee, H. Y. Choi, S. K. Shin and Y. C. Chung, “A review of polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” J.
Lightwave Technol., vol. 24, pp. 4162-4171, Nov. 2006.
[10] M. R. Phillips and S. L. Woodward, “Cross polarization modulation: theory and measurement of a two-channel WDM system,” IEEE Photon. Technol. Lett., vol. 17, pp. 2086-2088, Oct. 2005.
[11] J. H. Lee and Y. C. Chung, “Effect of polarization-dependent loss on optical signal-to-noise ratio monitoring technique based on polarization-nulling method,” Opt.
Express, vol. 14, pp. 5045-5049, Jun. 2006.
[12] J. H. Lee and Y. C. Chung, “Improved OSNR monitoring technique based on polarization-nulling method,” Electron. Lett., vol. 37, pp. 972–973, Jul. 2001.
[13] A. Chraplyvy, R. Tkach, L. Buhl and R. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibers,” Electron. Lett., vol. 22, pp. 409–411, Apr. 1986.
[14] M. Tomizawa, Y. Yamabayashi, Y. Sato and T. Kataoka, “Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibres,”
Electron. Lett., vol. 30, pp. 1434–1435, Aug. 1994.
[15] G. Rossi, T. E. Dimmick and D. J. Blumenthal, “Optical performance monitoring in reconfigurable optical networks using subcarrier multiplexing,” J. Lightwave Technol., vol. 18, pp. 1639-1648, Dec. 2000.
[16] K. J. Park, C. J. Youn, J. H. Lee and Y. C. Chung, “Performance comparisons of chromatic dispersion-monitoring techniques using pilot tones,” IEEE Photon. Technol. Lett., vol. 15, pp. 873-875, Jun. 2003.
[17] N. Liu, W. D. Zhong, Y. J. Wen, C. Lu, L. Cheng and Y. Wang, “PMD and chirp effects suppression in RF tone-based chromatic dispersion monitoring,” IEEE Photon. Technol. Lett., vol. 18, pp. 673-675, Mar. 2006.
[18] T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin and A. E. Willner, “PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband,” IEEE Photon. Technol. Lett., vol. 16, pp. 2177-2179, Sep. 2004.
[19] Q. Yu, Z. Pan, L. S. Yan and A. E. Willner, “Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection,” J. Lightwave Technol., vol. 20, pp. 2267-2271, Dec. 2002.
[20] S. M. R. M. Nezam, J. E. McGeehan and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal’s degree of polarization on the
optical data spectrum,” J. Lightwave Technol., vol. 22, pp. 763-772, Mar. 2004.
[21] N. S. Bergano, F. W. Kerfoot and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett., vol. 5, pp. 304-306, Mar. 1993.
[22] Z. Li, C. Lu, Y. Dong, Y. Wang, T. H. Cheng and F. M. Yue, “Asynchronous sampling for Q-factor estimation using sampling pulse with wide pulsewidth,” IEEE
Photon. Technol. Lett., vol. 15, pp. 1749-1751, Dec. 2003.
[23] R. Luís, P. André, A. Teixeira and P. Monteiro, “Performance monitoring in optical networks using asynchronous acquired samples with nonideal sampling systems and intersymbol interference,” J. Lightwave Technol., vol. 22, pp. 2452-2459, Nov. 2004.
[24] S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proc. OFC, Paper OThP5, Anaheim, CA, 2006.
[25] D. Derickson, Fiber optic test and measurement, Prentice Hall PTR, 1998.
[26] I. Shake, H. Takara and S. Kawanishi, “Technology for flexibly monitoring optical signal quality in transparent optical communications,” J. Opt. Netw., vol. 6, pp.
1229–1235, Nov. 2007.
[27] G. P. Agrawal, Fiber-optic communication systems, John Wiley & Sons, 2002.
[28] D. K. Mynbaev and L. L. Scheiner, Fiber-optic communications technology, Prentice Hall, 2001.
[29] S. Ohteru and N. Takachio, “Optical signal quality monitor using direct Q-factor measurement,” IEEE Photon. Technol. Lett., vol. 11, pp. 1307-1309, Oct. 1999.
[30] I. Shake, H. Takara, S. Kawanishi and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett., vol. 34, pp. 2152–2154,
Oct. 1998.
[31] N. Hanik, A. Gladisch, C. Caspar and B. Strebel, “Application of amplitude histograms to monitor performance of optical channels”, Electron. Lett., vol. 35, pp. 403–404, Mar. 1999.
[32] H. Zhang, M. Yao, C. Peng and Y. Gao, “Optical waveform measurement with electroabsorption modulator as sampling component,” Opt. Eng., vol. 43, pp. 441-444,
Feb. 2004.
[33] I. Shake, H. Takara and S. Kawanishi, “Simple Q-factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous
electrooptical sampling,” IEEE Photon. Technol. Lett., vol. 15, pp. 620-622, Apr. 2003.
[34] H. Chen, A. W. Poon, X. Cao, “Transparent monitoring of rise time using asynchronous amplitude histograms in optical transmission systems,” J. Lightwave
Technol., vol. 22, pp. 1661-1667, Jul. 2004.
[35] I. Shake and H. Takara, “Averaged Q-factor method Using Amplitude Histogram Evaluation for Transparent Monitoring of Optical Signal-to-Noise Ratio Degradation on
Optical Transmission System”, J. Lightwave Technol., vol. 20, pp. 1367-1373, Aug. 2002.
[36] I. Shake and H. Takara, “Chromatic dispersion dependence of asynchronous amplitude histogram evaluation of NRZ signal,” J. Lightwave Technol., vol. 21, pp.
2154-2161, Oct. 2003.
[37] J. Balcells, A. Santolaria, A. Orlandi, D. González and J. Gago, “EMI reduction in switched power converters using frequency modulated techniques,” IEEE Trans.
Electromagn. Compat., vol. 47, pp. 569-576, Aug. 2005.
[38] K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread spectrum clock generation for the reduction of radiated emissions,” in Proc. IEEE Int. Electromagnetic Compatibility Symp., pp. 227–231, Chicago, IL, Aug. 1994.
[39] H. H. Chang, I. H. Hua and S. I. Liu, “A spread-spectrum clock generator with triangular modulation,” IEEE J. Solid-State Circuits, vol. 38, pp. 673-676, Apr. 2003.
[40] L. William and V. H. Chu, “Apparatus and method for spread spectrum clock generator with accumulator,” U.S Pat. No 7,443,905, Oct. 2008.
[41] I. T. Sha, “Spread spectrum at phase lock loop (PLL) feedback path,” U.S Pat. No 6,377,646, Apr. 2002.
[42] N. Hanik, A. Gladisch, C. Caspar and B. Strebel, “Application of amplitude histogram to monitor performance of optical channels,” Electron. Lett., vol. 35, pp.
403–404, Mar. 1999.
[43] L. Kazovsky, S. Benedetto and A. Willner, Optical fiber communication systems, Artech House, 1996.
[44] K. P. Ho, Phase-modulated optical communication systems, Springer, 2005.
[45] A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol., vol. 23, pp. 115-130, Jan. 2005.
[46] T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt and J. C. Li, “Multi impairment monitoring for optical networks,” J. Lightwave Technol., vol. 27, pp. 3729-3736, Aug. 2009.
[47] G. P. Agrawal, Lightwave technology: telecommunication systems, Wiley, Hoboken, NJ, 2005.
[48] Z. Li, Y. Wang, C. Lu, and G. Li, “In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 1998–2000, Sep. 2005.
[49] ITU-T, “Broadband optical access systems based on passive optical networks (PON),” Recommendation G. 983.1, 1998.
[50] IEEE, “Ethernet in the first mile standard,” IEEE Recommendation 802.3 ah, 2003.
[51] ITU-T, “Gigabit-capable passive optical networks (G-PON): general characteristics,” Recommendation G. 984.1, 2003.
[52] C. H. Lee, W. V. Sorin and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol. 24, pp. 4568-4583, Dec. 2006.
[53] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical
network,” J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
[54] M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral splicing for local access applications,” IEEE Photon. Technol. Lett., vol. 8, pp. 721-723, May. 1996.
[55] M. Presi , R. Proietti , K. Prince , G. Contestabile and E. Ciaramella “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Express, vol. 16, pp.
19043-19048, Nov. 2008.
[56] M. Azadeh, Optical receiver design, Springer, New York, NY, 2009.
[57] X. Z. Qiu, P. Ossieur, J. Bauwelinck, Y. Yi, D. Verhulst, J. Vandewege, B. D. Vos and P. Solina, “Development of GPON upstream physical-media-dependent
prototypes,” J. Lightwave Technol., vol. 22, pp. 2498-2508, Nov. 2004.
[58] ITU-T, “Gigabit-Capable Passive Optical Networks (G-PON): Physical media dependent (PMD) layer specification,” Recommendation G. 984.2, 2003.
[59] D. Verhulst, Y. Yi, J. Bauwelinck, X. Z. Qiu, S. Verschuere, Z. Lou, and J. Vandewege, “Theoretical and experimental study of laser turn-on delay in a GigaPON
system with pre-biasing bits,” in Proc. 7th Ann. Symp. IEEE/LEOS Benelux Chapter, pp. 290–293, Netherlands, Dec. 2002.
[60] B. Shastri, J. Faucher, N. Kheder, M. Zeng, N. Zicha, D. Plant, “Performance analysis of burst-mode receivers with clock phase alignment and forward error
correction for GPON,” Analog Integrated Circuits and Signal Processing, vol. 60, pp. 57-70, Aug. 2009.
[61] ITU-T, “Gigabit-capable passive optical networks (G-PON): transmission convergence layer specification,” Recommendation G. 984.3, 2004.
[62] P. S. Han and W. Y. Choi, “1 Gbps gated-oscillator burst mode CDR with half-rate clock recovery,” Journal of Semiconductor Technology and Science, vol. 4, pp. 275-279,
Dec. 2004.
[63] K. Tanaka, M. Tateda and Y. Inoue, “Measuring the individual attenuation distribution of passive branched optical networks”, IEEE Photon. Technol. Lett., vol.
8, pp. 915-917, Jul. 1996.
[64] C. K. Chan, F. Tong, L. K. Chen, K. P. Ho and D. Lam, “Fiber-fault identification for branched access networks using a wavelength-sweeping monitoring source,” IEEE
Photonics Technol. Lett. vol. 11, pp. 614-616, May. 1999.
[65] C. H. Yeh and S. Chi, “Optical fiber-fault surveillance for passive optical networks in s-band operation window,” Opt. Express, vol. 13, pp. 5494-5498, Jul. 2005.
[66] S. L. Lee, S. T. Ji and C. H. Cheng, “Novel fault monitoring scheme for PON systems using wavelength sweeper and interferometric devices,” Opto-Electronics and
Communications Conference (OECC), pp. 1–2, Sydney, Australia, Jul. 2008.
[67] J. Zheng, Optical Frequency-modulated continuous-wave interferometry, Springer, New York, 2005.
[68] D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J.
Lightwave Technol., vol. 3, pp. 971-977, Oct. 1985.
[69] B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol., vol. 4, pp.
1334-1351, Sep. 1986.
[70] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics 2nd edition, John Wiley
& Sons, New York, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46707-
dc.description.abstract在光纖骨幹網路中的光信號傳輸,因為其路徑長且傳輸速率高,容易受到光信噪比劣化與光纖色散之影響。對樹狀架構的光纖接取網路而言,由於其網路拓樸的特性,並無法使用傳統的光時域分析儀找出斷路分支。為了使光纖網路能維持好的服務品質,必須利用簡單且可靠的監測系統來確保其運作。
本論文提出光纖網路的光路監測架構,其中包含兩個部份:(1)眼圖參數監測,(2)網路斷線偵測。前者的內容包含非同步眼圖監測,其可應用在強度調變與同調光通信系統中;此外本論文也提出在被動光纖網路中,上行信號眼圖的監測方法,能夠藉此得到每個封包的眼圖參數。由於干涉式光網路斷線監測系統,可以應用在樹狀架構的光纖接取網路中。因此本論文先以理論推導為基礎,找出系統內參數間的對應關係,並以蒙地卡羅法進行模擬,並探討干涉元件之變異對監測結果造成的影響。
zh_TW
dc.description.abstractFor the transmissions in fiber-optic backbone networks, it is susceptible to the degradation of optical signal-to-noise ratio and dispersion due to the long transmission distance and high data rate. In tree-type fiber-optic access networks, a traditional optical time-domain is unable to distinguish the fault branch because of the network topology. In order to maintain service quality in fiber-optic networks, an easily-operated and reliable monitoring system is necessary.
The topic of this thesis is focus on monitoring technologies in fiber-optic networks, including (1) eye diagram monitoring and (2) fault branch detection. The former contains asynchronous eye diagram monitoring that can be adopted in amplitude-modulated and coherent optical communication systems. The burst mode eye diagram monitoring method for passive optical networks is also present in this thesis. Because the detection scheme using interferometric devices can detect the fault branch in a tree-type optical network, we derive the analytical expression related to this scheme and analyze the length tolerance of interferometric devices by using the Monte-Carlo simulation method.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:24:35Z (GMT). No. of bitstreams: 1
ntu-99-D92941002-1.pdf: 5799073 bytes, checksum: 2f17c8a2b91fefe38900fe741e286902 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝....................................................I
中文摘要...............................................II
英文摘要..............................................III
目錄...................................................IV
圖目錄.................................................VI
表目錄.................................................IX
第1章 緒論..............................................1
1.1 前言................................................1
1.2 光通道性能監測參考模型..............................3
1.3 光通道性能監測的發展概況............................3
1.4 光信號品質監測的發展概況............................7
1.5 資料性能資訊監測的發展概況..........................9
1.6 研究動機...........................................10
1.7 論文架構...........................................11
第2章 非同步取樣之Q 值監測技術.........................12
2.1 眼圖監測之工作原理............................ ....12
2.2 非同步取樣之眼圖監測...............................17
2.3 展頻時脈產生器之簡介...............................23
2.4 使用展頻時脈進行非同步取樣.........................26
第3章 同調光通信系統之非同步眼圖監測...................31
3.1 同調光通信系統簡介.................................31
3.2 光域DPSK 傳輸系統之簡介............................33
3.3 以相平面為基礎應用於IM/DD 系統之非同步眼圖監測.....36
3.4 以相平面為基礎應用於DPSK 系統之非同步眼圖監測......40
第4章 被動光網路之眼圖監測技術.........................49
4.1 被動光網路之發展現況...............................49
4.2 GPON 的上行與下行機制之簡介........................54
4.3 突發模式信號之眼圖監測架構.........................59
4.4 突發模式信號之眼圖監測系統.........................64
第5章 干涉式光纖監測技術...............................69
5.1 光網路斷線監測技術之簡介...........................69
5.2 干涉式光網路斷線監測技術之原理.....................73
5.3 系統性能與模擬.....................................77
5.4 容忍度分析與討論...................................83
第6章 結論與展望.......................................89
6.1 結論...............................................89
6.2 未來展望...........................................90
參考文獻...............................................92
已發表之著作...........................................99
dc.language.isozh-TW
dc.subject蒙地卡羅法zh_TW
dc.subject性能監測zh_TW
dc.subject非同步取樣zh_TW
dc.subject相平面zh_TW
dc.subject干涉元件zh_TW
dc.subjectPerformance monitoringen
dc.subjectMonte-Carlo methoden
dc.subjectinterferometric deviceen
dc.subjectphase portraiten
dc.subjectasynchronous samplingen
dc.title光纖網路監測技術之研究zh_TW
dc.titleThe Research on Monitoring Technologies for
Optical Networks
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor李三良
dc.contributor.oralexamcommittee高銘盛,劉政光,李揚漢,楊淳良,林恭如,邵守國,劉茂陽
dc.subject.keyword性能監測,非同步取樣,相平面,干涉元件,蒙地卡羅法,zh_TW
dc.subject.keywordPerformance monitoring,asynchronous sampling,phase portrait,interferometric device,Monte-Carlo method,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2010-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved