請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46692
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顧記華 | |
dc.contributor.author | Ting-Chun Kuo | en |
dc.contributor.author | 郭廷群 | zh_TW |
dc.date.accessioned | 2021-06-15T05:23:36Z | - |
dc.date.available | 2015-09-13 | |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-19 | |
dc.identifier.citation | 1. Nelson W. G., De Marzo A. M. & Isaacs W. B.. Mechanisms of Disease: Prostate Cancer. N Engl J Med 349, 366-381 (2003)
2. Wolf A. M., Wender R. C., Etzioni R. B., Thompson I. M., D'Amico A. V., Volk R. J., Brooks D. D., Dash C., Guessous I., Andrews K., DeSantis C., Smith R. A.. American Cancer Society Guideline for the Early Detection of Prostate Cancer. CA Cancer J Clin 60, 70-98 (2010) 3. Wilt T. J., Shamliyan T., Taylor B., MacDonald R., Tacklind J., Rutks I., Koeneman K., Cho C-S., Kane R.L.. Comparative Effectiveness of Therapies for Clinically Localized Prostate Cancer. Comparative Effectiveness Review No. 13. (2008) 4. Boris A. H., Martin E. G.. Therapeutic Options for Hormone-refractory Prostate Cancer in 2007. Urologic Oncology: Seminars and Original Investigations 25, 413-419 (2007) 5. Lin A. M., Small E. J.. Management of Hormone Refractory Prostate Cancer. Curr Opin Support Palliat Care 1, 187-191 (2007) 6. Shelley M., Harrison C., Coles B., Stafforth J., Wilt T., Mason M.. Chemotherapy for hormone-refractory prostate cancer. Cochrane Database of Systematic Reviews 4, (2008) 7. Stavridi F., Karapanagiotou E. M., Syrigos K. N.. Targeted Therapeutic Approaches for Hormone-refractory Prostate Cancer. Cancer Treat Rev 36, 122-130 (2010) 8. Li Y., Fang H., Xu W.. Recent Advance in the Research of Flavonoids as anticancer agents. Mini Rev Med Chem 7, 663-678 (2007) 9. Landis-Piwowar KR, Dou QP.. Polyphenols: Biological Activities, Molecular Targets, and the Effect of Methylation. Curr Mol Pharmacol 1, 233-243 (2008) 10. Ren W., Qiao Z., Wang H., Zhu L., Zang L.. Flavonoids: Promising Anticancer Agents. Med Res Rev 23, 519-534 (2003) 11. Bhatt R. S., Bubley G. J.. The Challenge of Herbal Therapies for Prostate Cancer. Clin Cancer Res 14, 7581-7582 (2008) 12. Malumbres M., Barbacid M.. Cell Cycle, CDKs and Cancer: a Changing Paradigm. Nature Review Cancer 9, 153-166 (2009) 13. Doonan J. H., Kitsios G.. Functional Evolution of Cyclin-dependent kinases. Mol Biotechnol 42, 14-29 (2008) 14. Van Den Heuvel S.. Cell-cycle Regulation. WormBook 21, 1-16 (2005) 15. Malumbres M., Barbacid M.. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630-641 (2005) 16. Malumbres M., Barbacid M.. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222-231 (2001) 17. Sherr C. J.. Cancer Cell Cycle Revisited. Cancer Res. 60, 3689-3695 (2000) 18. Johansson M., Persson J. L.. Cancer Therapy: Targeting Cell Cycle Regulators. Anticancer Agents Med Chem 8, 723-31 (2008) 19. Massague J.. G1 Cell-cycle Control and Cancer. Nature. 18, 298-306 (2004) 20. Witzel I., Koh L. F., Perkins N. D.. Regulation of Cyclin D1 Gene Expression. Biochem Soc. Trans. 38, 217-222 (2010) 21. Blain S. W.. Switching Cyclin D-cdk4 Kinase Activity on and off. Cell Cycle 1, 892-898 (2008) 22. Malumbres M. Cyclins and Related Kinase in Cancer Cells. J BUON. 12, S45-S52 (2007) 23. Sudarsanam S., Jonhson D. E.. Functional Consequences of mTOR Inhibition. Curr. Opin. Drug Discov. Devel. 13, 31-40 (2010) 24. Chan S.. Targeting the Mammalian Target of Rapamycin (mTOR): a new Approach to Treating Cancer. Br. J. Cancer 18, 1420-1424 (2004) 25. Inoki K., Guan K. L.. Complexity of the TOR Signaling Network. Trends Cell Biol. 16, 206-212 (2006) 26. Hay N., Sonenberg N.. Upstream and Downstream of mTOR. Genes Dev. 15, 1926-1945 (2004) 27. Dan H. C., Cooper M. J., Cogswell P. C., Duncan J. A., Ting J. P., Baldwin A. S., Bjornsti M. A., Houghton P. J.. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev. 22, 1490-1500 (2008) 28. Bjornsti M. A., Houghton P. J.. The TOR Pathway: a Target for Cancer Therapy. Nat. Rev. Cancer 4, 335-348 (2004) 29. MacFarlane M.. Cell Death Pathways- Potential Therapeutic Targets. Xenobiotica. 39, 616-624 (2009) 30. Kerr J. F., Wyllie A. H., Currie A. R.. Apoptosis: a Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. Be. J. Cancer 26, 239-257 (1972) 31. Schulze-Bergkamen H., Krammer P. H.. Apoptosis in Cancer – Implications for Therapy. Semin. Oncol. 31, 90-119 (2004) 32. Cotter T. G.. Apoptosis and Cancer : the Genesis of a Research Field Nat. Rev. Cancer 9, 501-507 (2009) 33. Danial N. N., Korsmeyer S. J.. Cell Death : Critical Control points. Cell 116, 205-219 (2004) 34. MacFarlane M., Williams A. C.. Apoptosis and Disease : a Life or Death Decision. EMBO 5, 674-678 (2004) 35. Pop C., Salvesen G. S.. Human Caspases : Activation, Specificity, and Regulation. J. Biol. Chem. 284, 21777-21781 (2009) 36. Chowdhury I., Tharakan B., Bhat G. K.. Caspases – an Update. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 10-27 (2008) 37. Denault J. B., Salvesen G. S.. Apoptotic Caspase Activation and Activity. Methods Mol. Biol. 414, 191-220 (2008) 38. Letai A.. Growth Factor Withdrawal and Apoptosis : the Middle Game. Mol. Cell 21, 749-760 (2006) 39. Kulms D., Schwarz T.. Molecular Mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 16, 195-201 (2000) 40. Simon H. U., Hai-Yehia A., Levi-Schaffer F.. Role of Reactive Oxygen Species (ROS) in Apoptosis Induction. Apoptosis 5, 415-418 (2000) 41. Jeong S. Y., Seol S. W.. The Role of Mitochondria in Apoptsis. BMB report 41, 11-22 (2008) 42. Caroppi P., Sinibaldi F., Fiorucci L., Santucci R.. Apoptosis and Human Diseases : Mitochondrion Damage and Lethal Role of Released Cytochrome C as Proapoptotic Protein. Curr. Med. Chem. 16, 4058-4065 (2009) 43. Wang C., Youle R. J.. The Role of Mitochondria in Apoptosis. Annu. Rev. Genet. 43, 95-118 (2009) 44. Chipuk J. E., Moldoveanu T., Liambi F., Parsons M. J., Green D. R.. The Bcl-2 Family Reunion. Mol. Cell 37, 299-310 (2010) 45. Oltvai Z. N., Milliman C. L., Korsmeyer S. J.. Bcl-2 Heterodimerizes in vivo with a Conserved Homolog, Bax, that Accelerates Programmed Cell Death. Cell 74, 609–619 (1993). 46. Chittenden T., Harrington E. A., O'Connor R., Flemington C., Lutz R. J., Evan G. I., Guild B. C.. Induction of Apoptosis by the Bcl-2 Homologue Bak. Nature 374, 733–736 (1995). 47. Yip K. W., Reed J. C.. Bcl-2 Family Proteins and Cancer. Oncogene 27, 6398–6406 (2008). 48. Dejean L. M., Martinez-Caballero S., Guo L., Hughes C., Teijido O., Ducret T., Ichas F., Korsmeyer S. J., Antonsson B., Jonas E. A., Kinnally K. W.. Oligomeric Bax is a Component of the Putative Cytochrome c Release Channel MAC, Mitochondrial Apoptosis-induced Channel. Mol. Biol. Cell 16, 2424-2432 (2005) 49. Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X.. Cytochrome c and dATP-dependent Formation of Apaf-1/caspase-9 Complex Initiates an Apoptotic Protease Cascade. Cell 91, 479-489 (1997) 50. Porter A. G., Urbano A.G.. Does Apoptosis-inducing factor (AIF) Have both Life and Death Functions in Cells? Bioessays 28, 834-943 (2006) 51. Li L. Y., Luo X., Wang X.. Endonuclease G is an Apoptotic DNase when Released from Mitochondria. Nature 412, 95-99 (2001) 52. Kapoor A., Sanyal A. J.. Endoplasmic Reticulum Stress and the Unfolded Protein Response. Clin. Liver Dis. 13, 581-590 (2009) 53. Szegezdi E., Logue S. E., Gorman A. M., Samali A.. Mediators of Endoplasmic Reticulum Stress-induced Apoptosis. EMBO Report 7, 880-885 (2006) 54. Xu C., Bailly-Maitre B., Reed J. C.. Endoplasmic Reticulum Stress: Cell Life and Death Decisions. J. Clin. Invest. 115, 2656-2664 (2005) 55. McCullough K. D., Martindale J. L., Klotz L. O., Aw T. Y., Holbrook N. J.. Gadd153 Sensitizes Cells to Endoplasmic Reticulum Stress by Down-regulating Bcl2 and Perturbing the Cellular Redox State. Mol. Cell Biol. 21, 1249-1259 (2001) 56. Tan Y., Dourdin N., Wu C., De Veyra T., Elce J. S., Greer P. A.. Ubiquitous Calpains Promote Caspase-12 and JNK Activation During Endoplasmic Reticulum Stress-induced Apoptosis. J. Biol. Chem. 281, 16016-16024 (2006) 57. Li J., Lee A. S.. Stress Induction of GRP78/BiP and its Role in Cancer. Curr. Mol. Med. 6, 45-54 (2006) 58. Oyadomari S., Mori M.. Roles of CHOP/GADD153 in Endoplasmic Reticulum Stress. Cell Death Differ. 11, 381-389 (2004) 59. Scheuner D., Song B., McEwen E., Liu C. Laybutt R., Gillespie P., Saunders T., Bonner-Weir S., Kaufman R. J.. Translational Control is Required for The Unfolded Protein Response and in vivo Glucose Homeostasis. Mol. Cell 7, 1165-1176 (2001) 60. Maytin E. V., Ubeda M., Lin J. C., Habener J. F.. Stress-inducible Transcription Factor CHOP/gadd153 Induces Apoptosis in Mammalian Cells via p38 Kinase-dependent and -Independent Mechanisms. Exp. Cell Res. 15, 192-204 (2001) 61. Ron D.. Translational Control in the Endoplasmic Reticulum Stress Response. J. Clin. Invest. 110, 1383-1388 (2002) 62. He Q., Luo X., Jin W., Huang Y., Reddy M. V., Reddy E. P., Sheikh M. S.. Celecoxib and a Novel COX-2 Inhibitor ON09310 Upregulate Death Receptor 5 Expression via GADD153/CHOP. Oncogene 27, 2656-2660 (2008) 63. Momoi T.. Caspases Involved in ER Stress-mediated Cell Death. J Chem Neuroanat. 28,101-105 (2004) 64. Szegezdi E., Fitzgerald U., Samali A.. Caspase-12 and ER-stress-mediated Apoptosis: the Story so far. Ann. N. Y. Acad. Sci. 1010,186-94 (2003) 65. Fischer H., Koenig U., Eckhart L., Tschachler E.. Human Caspase 12 has Acquired Deleterious Mutations. Biochem. Biophys. Res. Commun. 293, 722–726 (2002) 66. Clapham D. E.. Calcium Signaling. Cell 131, 1047-1058 (2007) 67. Giacomello M., Drago I., Pizzo P., Pozzan T.. Mitochondrial Ca2+ as a key Regulator of Cell Life and Death. Cell Death Differ. 14, 1267-1274 (2007) 68. Szabadkai G., Duchen M. R.. Mitochondria: the hub of Cellular Ca2+ Signaling. Physiology 23, 84-94 (2008) 69. Spät A., Fülöp L., Koncz P., Szanda G.. When is high-Ca2+ Microdomain Required for Mitochondrial Ca2+ Uptake? Acta. Physiol. 195, 139-147 (2009) 70. Orrenius S., Zhivotovsky B., Nicotera P.. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552-565 (2003) 71. Baffy G., Miyashita T., Williamson J. R., Reed J. C.. Apoptosis Induced by Withdrawal of Interleukin-3 (IL-3) from an IL-3- dependent Hematopoietic Cell Line is Associated with Repartitioning of Intracellular Calcium and is Blocked by Enforced Bcl-2 Oncoprotein Production. J. Biol. Chem. 268, 6511–6519 (1993) 72. Rizzuto R., Marchi S., Bonora M., Aguiari P., Bononi A., De Stefani D., Giorgi C., Leo S., Rimessi A., Siviero R., Zecchini E., Pinton P.. Ca2+ Transfer from the ER to Mitochondria: When, How and Why. Biochim. Biophys. Acta. 1787,1342-1351 (2009) 73. Goll D. E., Thompson V. F., Li H., Wei W., Cong J.. The Calpain System. Physiol Rev. 83,731-801 (2003) 74. Harwood S. M., Yaqoob M. M., Allen D. A.. Caspase and Calpain Function in cell Death: Bridging the gap Between Apoptosis and Necrosis. Ann. Clin. Biochem. 42,415-431 (2005) 75. Nermar R. W., Wu Y. A., Gada H., Guttmann R. P., Siman R.. Cross-talk Between Calpain and Caspase Proteolytic Systems During Neuronal Apoptosis. J. Biol. Chem. 278, 14162-14167 (2003) 76. Nakagawa T., Yuan J.. Cross-talk Between Two Cysteine Protease Families. Activation of Caspase-12 by Calpain in Apoptosis. J. Cell Biol. 150,887-894 (2000) 77. Newton A. C.. Protein Kinase C: Poised to Signal. Am. J. Physiol Endocrinol Metab. 298, E395-402 (2010) 78. Gutcher I., Webb P. R., Anderson N. G.. The Isoform-specific Regulation of Apoptosis by Protein Kinase C. Cell Mol. Life Sci. 60, 1061-1070 (2003) 79. Gavrielides M. V., Frijhoff A. F., Conti C. J., Kazanietz M. G..Protein Kinase C and Prostate Carcinogenesis: Targeting the Cell Cycle and Apoptotic Mechanisms. Curr. Drug Target. 5, 431-443 (2004) 80. Swulius M. T., Waxham M. N.. Calcium Calmodulin-dependent Protein Kinase. Cell. Mol. Life Sci. 65, 2637-2657 (2008) 81. Michie A. M., McCaig A. M., Nakagawa R., Vukovic M.. Death-associated Protein Kinase (DAPK) and Signal Transduction: Regulation in Cancer. FEBS J. 277, 74-80 (2010) 82. Fisslthaler B., Fleming I.. Activation and Signaling by the AMP-activated Protein Kinase in Endothelial Cells. Circ. Res. 105, 114-127 (2009) 83. Kuhajda F. P.. AMP-activated protein kinase and human cancer: cancer metabolism revisited. Int. J. Obes. 32 S36-41 (2008) 84. Corcelle E. A., Puustinen P., Jäättelä M.. Apoptosis and Autophagy: Targeting Autophagy Signalling in Cancer Cells -'Trick or Treats'? FEBS J. 276, 6084-6096 (2009) 85. Regan M. M. and Phillip A. D.. Akt-dependent and independent mechanisms of mTOR regulation in cancer Cell Signal 21 656–664 (2009) 86. Cook S. J., Lockyer P. J.. Recent advances in Ca2+-dependent Ras regulation and cell proliferation. Cell Calcium. 39, 101-112 (2006) 87. Minaguchi, T., Waite, K. A. & Eng, C. Nuclear Localization of PTEN is Regulated by Ca2+ Through a Tyrosil Phosphorylation-independent Conformational Modification in Major Vault Protein. Cancer Res. 66, 11677–11682 (2006) 88. Beyersmann D., Hechtenberg S..Cadmium, gene Regulation, and Cellular Signalling in Mammalian cells. Toxicol Appl Pharmacol. 144, 247-61 (1997) 89. Flourakis M., Prevarskaya N.. Insights into Ca2+ Homeostasis of Advanced Prostate Cancer cells. Biochim Biophys Acta. 1793, 1105-1109 (2009) 90. Rizzuto R., Pinton P., Ferrari D., Chami M., Szabadkai G., Magalhães P. J., Di Virgilio F., Pozzan T..Oncogene. Calcium and apoptosis: facts and hypotheses. Oncogene. 24, 8619-8627 (2003) 91. Giorgi C., Romagnoli A., Pinton P., Rizzuto R..Ca2+ Signaling, Mitochondria and cell Death. Curr. Mol. Med. 8,119-130. (2008) 92. Smith D. J., Ng H., Kluck R. M., Nagley P.. The Mitochondrial Gateway to cell Death. IUBMB Life. 60, 383-389 (2008) 93. Lorenzo H. K., Susin S. A..Therapeutic Potential of AIF-mediated Caspase-independent Programmed cell Death. Drug Resist. Updat. 10, 235-255 (2007) 94. Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de Murcia, J., Susin, S.A., Sequential Activation of Poly(ADP-ribose) Polymerase 1, Calpains, and Bax is Essential in Apoptosis-inducing Factor-mediated Programmed Necrosis. Mol. Cell. Biol. 27, 4844–4862 (2007) 95. Newton A. C. Lipid activation of protein kinases. J Lipid Res.50 ,S266-71. (2009) 96. Lamm M. L., Long D. D., Goodwin S. M., Lee C.. Transforming Growth Factor-beta1 Inhibits Membrane Association of Protein Kinase C Alpha in a Human Prostate Cancer cell line, PC3. Endocrinology. 138, 4657-64 (1997) 97. Garcia-Bermejo M. L., Leskow F. C., Fujii T., Wang Q., Blumberg P. M., Ohba M., Kuroki T., Han K. C., Lee J., Marquez V. E., Kazanietz M. G.. Diacylglycerol (DAG)-lactones, a new Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCalpha. J. Biol. Chem. 277, 645-655 (2002) 98. Yin L., Bennani-Baiti N., Powell C. T.. Phorbol Ester Induced Apoptosis of C4-2 Cells Requires both a Unique and a Redundant Protein Kinase C Signaling Pathway. J. Biol. Chem. 280, 5533-5541 (2005) 99. Paone A., Starace D., Galli R., Padula F., De Cesaris P., Filippini A., Ziparo E., Riccioli A.. Toll-like Receptor 3 Triggers Apoptosis of Human Prostate Cancer Cells Through a PKC-alpha-dependent Mechanism. Carcinogenesis. 29,1334-1342 (2008) 100. Bang O. S., Park J. H., Kang S. S.. Activation of PKC but not of ERK is Required for Vitamin E-succinate-induced Apoptosis of HL-60 Cells. Biochem. Biophys. Res. Commun. 288, 789-797 (2001) 101. Alessi D. R..The Protein Kinase C Inhibitors Ro 318220 and GF 109203X are Equally Potent Inhibitors of MAPKAP Kinase-1beta (Rsk-2) and p70 S6 Kinase. FEBS Lett. 402, 121-123 (1997) 102. Gschwendt M., Dieterich S., Rennecke J., Kittstein W., Mueller H. J., Johannes F. J.. Inhibition of Protein Kinase C μ by Various Inhibitors. Differentiation from Protein Kinase C Isoenzymes. FEBS Lett.392, 77–80 (1996) 103. Colomer J., Means A. R.. Physiological Roles of the Ca2+/CaM-dependent Protein Kinase Cascade in Health and Disease. Subcell Biochem. 45, 169-214 (2007) 104. Olofsson M. H., Havelka A. M., Brnjic S., Shoshan M. C., Linder S.. Charting Calcium-regulated Apoptosis Pathways Using Chemical Biology: role of Calmodulin Kinase II. BMC Chem. Biol. 8:2 (2008) 105. Pinton P., Ferrari D., Magalhaes P., Schulze-Osthoff K., Di Virgilio F., Pozzan T.. Reduced Loading of Intracellular Ca(2+) Stores and Downregulation of Capacitative Ca(2+) Influx in Bcl-2-overexpressing Cells. J Cell Biol. 148, 857–862 (2000) 106. Palmer A. E., Jin C., Reed J. C., Tsien R. Y.. Bcl-2-mediated Alterations in Endoplasmic Reticulum Ca2+ Analyzed with an Improved Genetically Encoded Fluorescent Sensor. Proc. Natl. Acad. Sci. USA 101: 17404–17409 (2004) 107. Chami M., Prandini A., Campanella M., Pinton P., Szabadkai G., Reed J. C., Rizzuto R.. Bcl-2 and Bax Exert Opposing Effects on Ca2+ Signalling, Which do not Depend on Their Putative Pore-forming Region. J Biol Chem 279, 54581–54589 (2004) 108. Xiao J., Chu Y., Hu K., Wan J., Huang Y., Jiang C., Liang G., Li X. Synthesis and Biological Analysis of a new Curcumin Analogue for Enhanced Anti-tumor Activity in HepG 2 Cells. Oncol. Rep. 23, 1435-1441 (2010) 109. Schwarze S. R., Lin E. W., Christian P. A., Gayheart D. T., Kyprianou N.. Intracellular Death Platform Steps-in: Targeting Prostate Tumors via Endoplasmic Reticulum (ER) Apoptosis. Prostate. 68, 1615-1623 (2008) 110. Ron D., Walter P.. Signal Integration in the Endoplasmic Reticulum Unfolded Protein Response. Nat. Rev. Mol. Cell Biol. 8, 5195-29 (2007) 111. Rutkowski D. T., Arnold S. M., Miller C. N., Wu J., Li J., Gunnison K. M., Mori K., Sadighi Akha A. A., Raden D., Kaufman R. J. Adaptation to ER Stress is Mediated by Differential Stabilities of Pro-survival and Pro-apoptotic mRNAs and Proteins. PLoS Biol. 4, e374 (2006) 112. Szegezdi E., Logue S. E., Gorman A. M., Samali A.. Mediators of Endoplasmic Reticulum Stress-Induced Apoptosis. EMBO Rep. 7, 880-885 (2006) 113. Almeida A., Moncada S, Bolaños J. P.. Nitric Oxide Switches on Glycolysis Through the AMP Protein Kinase and 6-phosphofructo-2-kinase Pathway. Nat. Cell Biol. 6, 45-51 (2004) 114. Choi S. L., Kim S. J., Lee K. T., Kim J., Mu J., Birnbaum M. J., Soo Kim S., Ha J.. The Regulation of AMP-activated Protein Kinase by H(2)O(2) Biochem. Biophys. Res. Commun. 14, 92-97 (2001) 115. Carling D., Sanders M. J., Woods A.. The Regulation of AMP-activated Protein Kinase by Upstream Kinases. Int. J. Obes. 32, S55-S59 (2008) 116. Hawley S. A., Selbert M. A., Goldstein E. G., Edelman A. M., Carling D., Hardie D. G.. 5’-AMP Activates the AMP-activated Protein Kinase Cascade, and Ca2+/calmodulin Activates the Calmodulin Dependent Protein Kinase I Cascade, via Three Independent Mechanisms. J. Biol. Chem. 270, 27186–27191 (1995) 117. Kim Y. W., Lee S. M., Shin S. M., Hwang S. J., Brooks J. S., Kang H. E., Lee M. G., Kim S. C., Kim S. G.. Efficacy of Sauchinone as a Novel AMPK-activating Lignan for Preventing Iron-induced Oxidative Stress and Liver Injury. Free Radic. Biol. Med. 47, 1082-1092 (2009) 118. Hardie D. G.. The AMP-activated Protein Kinase Pathway-- New Players Upstream and Downstream. J. Cell Sci. 117, 5479-5487 (2004) 119. Hsu Y. C., Meng X., Ou L., Ip M. M.. Activation of the AMP-activated Protein Kinase-p38 MAP Kinase Pathway Mediates Apoptosis Induced by Conjugated Linoleic Acid in p53-mutant Mouse Mammary Tumor Cells. Cell Signal. 22, 90-99 (2010) 120. Gibbons J. J., Abraham R. T., Yu K.. Mammalian Target of Rapamycin: Discovery of Rapamycin Reveals a Signaling Pathway Important for Normal and Cancer Cell Growth. Semin. Oncol. 36, S3-S17 (2009) 121. Costa LF, Balcells M, Edelman ER, Nadler LM, Cardoso AA. Proangiogenic Stimulation of Bone Marrow Endothelium Engages mTOR and is Inhibited by Simultaneous Blockade of mTOR and NF-{kappa}B. Blood 107, 285–292 (2006) 122. Kimball S. R. Interaction Between the AMP-activated Protein Kinase and mTOR Signaling Pathways. Med. Sci. Sports Exerc. 38, 1958-1964 (2006) 123. Klaunig J. E., Kamendulis L. M., Hocevar B. A..Oxidative Stress and Oxidative Damage in Carcinogenesis. Toxicol Pathol. 38, 96-109 (2010) 124. Fang J., Seki T., Maeda H.. Therapeutic Strategies by Modulating Oxygen Stress in Cancer and Inflammation. Adv. Drug Deliv. Rev. 61, 290-302 (2009) 125. Le Marchand L.. Cancer Preventive Effects of Flavonoids--a Review. Biomed. Pharmacother. 56, 296-301 (2002) 126. Storz P. Reactive Oxygen Species in Tumor Progression. Front Biosci. 10, 1881-1896 (2005) 127. Amić D., Davidović-Amić D., Beslo D., Rastija V., Lucić B., Trinajstić N.. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 14, 827-845 (2007) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46692 | - |
dc.description.abstract | 前列腺癌一直是西方國家高罹患率及高死亡率的癌症之一,而隨著生活習慣及飲食的西化,前列腺癌的罹患率及死亡率也在亞洲地區快速的攀升。造成前列腺癌高死亡率的主要原因來自於癌症的轉移及惡化,但目前並沒有有效治療的藥物,極需要相關研究的投入。本次研究之化合物WJ9708012 (6-(3-Hydroxy-3-methylbutyl)-2’-(7-hydroxy-3,7-dimethyloctyl)-3’,4’,5,7-Tetramethoxy
-flavanone) 為類黃酮類結構,與一般類黃酮類化合物不同,其不具有強效的抗氧化能力,但對於人類賀爾蒙抗性前列腺癌細胞PC-3及DU-145,則展現抑制細胞生長及促進細胞凋亡之能力。於抑制細胞生長功能上,WJ9708012藉由抑制mTOR相關訊息傳遞路徑,使cyclin D1等G1細胞週期調控之重要分子表現量降低,造成G1細胞週期停滯現象。使用西方點墨法觀察發現,WJ9708012造成p-mTORser2448、p-P70S6KThr389及p-4E-BP1Thr37/46位置的磷酸化現象明顯減少,使eIF4E調控的7-methylguanosine 5’-triphosphate (m7GTP) cap-dependent translation無法進行,下游cyclin D1等G1細胞週期相關蛋白在mRNA沒有明顯減少的情況下蛋白表現量皆大幅降低,使細胞無法順利通過G1細胞週期,產生停滯生長現象。此現象可藉由給予胎牛血清使mTOR相關訊息傳遞路徑活化的方式降低,間接證明抑制mTOR相關訊息傳遞在此化合物抑制細胞生長之功能中扮演重要角色。在引起細胞凋亡方面,短時間處理WJ9708012可產生一個由細胞外進入胞內的鈣離子流,造成胞內鈣離子濃度迅速上升並活化鈣離子相關訊息分子,如:μ-calpain、PKC-α及calmodulin,使細胞內粒線體及內質網兩個調控鈣離子之重要胞器產生壓力或傷害等影響。粒線體部分,WJ9708012造成粒線體損傷,使膜電位流失及下游內生性細胞凋亡訊息途徑啟動。以西方點墨法觀察,可發現化合物造成粒線體凋亡因子釋出、caspase-9、-3、-7活化及晚期Bcl-2家族蛋白表現量改變及斷裂現象。另外,化合物也會造成細胞內能量恆定失調,使在此扮演細胞保護功能之AMPK蛋白活化,調控下游訊息分子。於內質網部分,則可觀察到內質網壓力產生,使GRP78、GADD153及Caspase12表現量增加或斷裂活化的現象。WJ9708012引起的粒線體損傷和內質網壓力在密切的訊息傳遞後,會造成細胞凋亡途徑的啟動。使用流式細胞儀可觀察到subG1細胞增加和具有PI-Annexin X雙重螢光訊號細胞增加的現象。此外,使用TUNEL assay亦可觀察到具有DNA斷點的螢光訊號之細胞增加情形。總體而言,WJ9708012引起人類賀爾蒙抗性前列腺癌細胞PC-3細胞G1細胞週期停滯及細胞凋亡反應,主要是藉由抑制mTOR相關訊息傳遞路徑及引起鈣離子流入細胞質,影響相關訊息傳遞分子之活性,並造成粒線體及內質網損傷,而啟動細胞凋亡途徑來達成。 | zh_TW |
dc.description.abstract | Prostate cancer is one of the leading causes of cancer death among men in the United States and Western Europe. Following the transition of lifestyle to Western type, the mortality of prostate cancer is rapidly increased in Asian countries. Most prostate cancer-related deaths are due to advanced disease and, until recently, the hormone therapy was the only well-acceptable treatment approved for advanced prostate cancer. However, many patients were resistant to hormonal therapies after two to three years of treatment and no effective therapy currently exists for advanced prostate cancers that are resistant to hormonal therapy. In this thesis, we reported that a methoxyflavanone – WJ9708012 (6-(3-Hydroxy-3-methylbutyl)-2’-(7-hydroxy-3,7-dimethyloctyl)-3’,4’,5,7-
Tetramethoxyflavanone) inhibited growth and produced apoptosis of human hormone-resistant prostate cancer PC-3 and DU-145 cells. WJ9708012 inhibited cell proliferation and induced G1-phase cell-cycle arrest. By using Western blotting analysis, we found that WJ9708012 induced a rapid and time-dependent decrease of phosphorylation level of mTORSer2448, P70S6KThr389 and 4E-BP1Thr37/Thr46, which would suppress 7-methylguanosine 5’-triphosphate (m7GTP) cap-dependent translation through inhibiting eIF4E release from the translational repressor 4E-BP1 and down-regulating the expression of cyclin D1. The stimulation of mTOR-related signaling pathway by fetal bovine serum could rescue the anti-proliferative effect of WJ9708012, indicating an important role of mTOR-related signaling pathway to WJ9708012 action. The treatment of PC-3 prostate cancer cells with WJ9708012 also induced a prompt calcium influx from the extracellular space. The increase in [Ca2+]i was associated with the activation of calcium-related signaling molecules, including calpain, PKC-α and calmodulin. Subsequently, these events caused mitochondria damage and resulted in the induction of cell apoptosis. By using Western blotting analysis, we found that WJ9708012 induced a mitochondria-regulated apoptosis, which involves the release of cytochrome c, activation of caspase-9, -3, and -7 and alteration of protein expression of Bcl-2 family members. Moreover, because of the damage of mitochondria function, WJ9708012 also caused the activation of AMPK, which served as a protective signal and regulated the downstream signal molecules. The endoplasmic reticulum (ER) stress was also induced by WJ9708012, which is associated with the cleavage of pro-caspase12 and the up-regulation of protein levels of GADD153 and GRP-78. A crosstalk between ER stress and mitochondrial insult was observed, leading to the apoptosis events in PC-3 cells. The apoptosis triggered by WJ9708012 in PC-3 cells was assessed using annexin V/ PI labeling and the TUNEL assay. Taken together, the data suggest that WJ9708012 causes a G1-phase cell cycle arrest by inhibiting mTOR-related pathways and induces the cell death through the activation of calcium influx from extracellular space matrix followed by ER stress and mitochondria damage, which would trigger the intrinsic apoptotic pathways. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:23:36Z (GMT). No. of bitstreams: 1 ntu-99-R97423011-1.pdf: 7987269 bytes, checksum: 2183211b9f9b26fa21f0117646f21370 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………I
致謝………………………………………………………………………II 縮寫表…………………………………………………………………III 中文摘要………………………………………………………………… V 英文摘要……………………………………………………………… VII 研究動機…………………………………………………………………1 背景………………………………………………………………………2 實驗材料…………………………………………………………………18 實驗方法…………………………………………………………………20 實驗結果…………………………………………………………………31 討論………………………………………………………………………38 結論………………………………………………………………………48 圖表………………………………………………………………………49 參考文獻…………………………………………………………………81 | |
dc.language.iso | zh-TW | |
dc.title | 類黃酮衍生物在人類雄性激素不依賴型前列腺癌細胞的抗癌作用機轉探討 | zh_TW |
dc.title | Investigation of Anticancer Mechanism of a Flavonoid Derivative in Human Androgen-Independent Prostate Cancer Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭哲志,楊家榮,黃聰龍 | |
dc.subject.keyword | 甲氧基黄,烷酮,鈣離子流,mTOR 抑制,AMPK活化,內質網壓力,粒線體壓力, | zh_TW |
dc.subject.keyword | Methoxyflavanone,Ca2+ mobilization,mTOR inhibition,AMPK activation,endoplasmic reticulum stress,mitochondrial stress, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 7.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。