請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志宏(Zsehong Tsai) | |
| dc.contributor.author | Wei-Chih Hong | en |
| dc.contributor.author | 洪維志 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:22:59Z | - |
| dc.date.available | 2010-07-26 | |
| dc.date.copyright | 2010-07-26 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-19 | |
| dc.identifier.citation | [1] 3GPP, 'Requirements for further advancements for E-UTRA (LTEAdvanced), Tech. Rep. TR 36.913 V9.0.0, December 2009.
[2] 3GPP, 'E-UTRA and E-UTRAN overall description,' Tech. Spec. TS 36.300 V8.12.0, March 2010. [3] IEEE 802.16 Task Group m, Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Advanced Air Interface (Draft). Institute of Electrical and Electronics Engineers, 2010. [4] K. Pousttchi and Y. Hufenbach, 'Analyzing and categorization of the business model of virtual operators,' in Proc. Eighth International Conference on Mobile Business, ICMB 2009, june 2009, pp. 87-92. [5] S. Garg and M. Kappes, 'Can I add a VoIP call?' in Proc. IEEE International Conference on Communications 2003, ICC '03, vol. 2, 11-15 2003, pp. 779-783 vol.2. [6] IEEE Std. 802.11n D3.00, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations: Amendment 4: Enhancements for Higher Throughput. Institute of Electrical and Electronics Engineers, 2007. [7] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, 'Femtocell networks: a survey,' IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67, September 2008. [8] I. F. Akyildiz and X. Wang, 'A survey on wireless mesh networks,' IEEE Communications Magazine, vol. 43, no. 9, pp. S23-S30, September 2005. [9] P. Leaves, K. Moessner, R. Tafazolli, D. Grandblaise, D. Bourse, R. Tonjes, and M. Breveglieri, 'Dynamic spectrum allocation in composite recon gurable wireless networks,' Communications Magazine, IEEE, vol. 42, no. 5, pp. 72-81, may 2004. [10] J. Roh, J. Kim, and Y. Han, 'Dynamic spectrum allocation using arrival rate ratio in cdma networks,' in Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2005, vol. 3, Sept. 2005, pp. 1870-1874. [11] H. Kim, Y. Lee, and S. Yun, 'A dynamic spectrum allocation between network operators with priority-based sharing and negotiation,' in Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2005, vol. 2, sept. 2005, pp. 1004-1008. [12] L. Kovacs and A. Vidacs, 'Interference-tolerant spatio-temporal dynamic spectrum allocation,' in Proc. 2nd IEEE International Symposium on New Frontiers in Dynamic spectrum Access Networks, DySPAN 2007, April 2007, pp. 403-411. [13] P. Leaves, S. Ghaheri-Niri, R. Tafazolli, and J. Huschke, 'Dynamic spectrum allocation in hybrid networks with imperfect load prediction,' in Proc. Third International Conference on 3G Mobile Communication Technologies, may 2002, pp. 444-448. [14] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, 'NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,' Computer Networks, vol. 50, no. 13, pp. 2127-2159, September 2006. [15] I. Mitola, J. and J. Maguire, G.Q., 'Cognitive radio: making software radios more personal,' Personal Communications, IEEE, vol. 6, no. 4, pp. 13-18, aug 1999. [16] X. Yang and J. Bigham, 'An integration architecture to 4th generation wireless networks,' in Proc. International Conference on Software in Telecommunications and Computer Networks, SoftCOM 2006, 29 2006-oct. 1 2006, pp. 257-261. [17] J. Hultell, K. Johansson, and J. Markendahl, 'Business models and resources management for shared wireless networks,' in Proc. IEEE Vehicular Technology Conference 2004 Fall, vol. 5, September 2004, pp. 3393-3397. [18] B. T. Olsen, D. Katsianis, D. Varoutas, K. Stordahl, J. Harno, N. K. Elnegaard, I. Welling, F. Loizillon, T. Monath, and P. Cadro, 'Technoeconomic evaluation of the major telecommunication investment options for european players,' IEEE Network, vol. 20, no. 4, pp. 6-15, July/August 2006. [19] W. Wang, S. C. Liew, and V. O. K. Li, 'Solutions to performance problems in VoIP over a 802.11 wireless LAN,' IEEE Transactions on Vehicular Technology, vol. 54, no. 1, pp. 366-383, January 2005. [20] H. Zhai and Y. Fang, 'A distributed packet concatenation scheme for sensor and ad hoc networks,' in Proc. IEEE Military Communications Conference, MILCOM 2005, October 2005, pp. 1-7. [21] Y. Xiao, 'Concatenation and piggyback mechanisms for the IEEE 802.11 MAC,' in Proc. IEEE Wireless Communications and Networking Conference, WCNC 2004, vol. 3, March 2004, pp. 1642-1647. [22] D. Kliazovich and F. Granelli, 'On packet concatenation with QoS support for wireless local area networks,' in Proc. 2005 IEEE International Conferernce on Communications, ICC 2005, May 2005, pp. 1395-1399. [23] T. Kanda and K. Shimamura, 'Application of packet assembly technology to digital video and VoIP,' in MULTIMEDIA '04: Proceedings of the 12th Annual ACM International Conference on Multimedia, New York, USA, 2004, pp. 392-395. [24] J. M. Blanquer and B. Ozden, 'Fair queuing for aggregated multiple links,' in SIGCOMM '01: Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. New York, NY, USA: ACM, 2001, pp. 189-197. [25] J. A. Cobb and M. Lin, 'A theory of multi-channel schedulers for quality of service,' Journal of High Speed Networks, vol. 12, no. 1-2, pp. 1-14, December 2002. [26] D. Niculescu, S. Ganguly, K. Kim, and R. Izmailov, 'Performance of VoIP in a 802.11 wireless mesh network,' in Proc. the 25th IEEE International Conference on Computer Communications, INFOCOM 2006, Barcelona, Spain, April 2006, pp. 1-11. [27] Y. Nagai, A. Fujimura, Y. Shirokura, Y. Isota, F. Ishizu, H. Nakase, S. Kameda, H. Oguma, and K. Tsubouchi, '324Mbps WLAN equipment with MAC frame aggregation,' in Proc. 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC'06, New York, NY, USA, September 2006. [28] T. Nihtila, 'Capacity improvement by employing femto cells in a macro cell hsdpa network,' in Proc. 2008 IEEE Symposium on Computers and Communications, ISCC 2008, july 2008, pp. 838-843. [29] L. T. W. Ho and H. Claussen, 'Effects of user-deployed co-channel femtocells on the call drop probability in a residential scenario,' in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC'07), September 2007. [30] H. Claussen, L. T. W. Ho, and L. G. Samuel, 'Self-optimization of coverage for femtocell deployments,' in Proc. Wireless Telecommunications Symposium (WTS), 2008. [31] V. Chandrasekhar and J. G. Andrews, 'Uplink capacity and interference avoidance for two-tier femtocell networks,' IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3498-3509, July 2009. [32] D. Choi, P. Monajemi, S. Kang, and J. Villasenor, 'Dealing with loud neighbors: The benefits and tradeoffs of adaptive femtocell access,' in Proc. IEEE Globecom 2008, 2008. [33] H. Claussen, L. T. W. Ho, and L. G. Samuel, 'Financial analysis of a picocellular home network deployment,' in Proc. IEEE International Conference on Communications 2007, ICC 2007, June 2007, pp. 5604-5609. [34] G. Beckman and G. Smith, 'Shared networks: making wireless communication a ordable,' IEEE Wireless Communications, vol. 12, no. 2, pp. 78-85, April 2005. [35] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, 'A game theoretic framework for bnadwidth allocation and pricing in broadband networks,' IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 667-678, October 2000. [36] E. Takahashi and Y. Tanaka, 'Dynamic bandwidth allocation system using english auction,' IEICE Transactions on Communications, vol. E85-B, no. 2, pp. 532-538, February 2002. [37] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. John Wiley & Sons, Inc., 1998. [38] S. Ross, Introduction to Stochastic Dynamic Programming. Academic Press, Inc., 1983. [39] WiMAX Forum, 'Mobile WiMAX - Part I: A Technical Overview and Performance Evaluation,' August 2006. [40] V. Gambiroza, B. Sadeghi, and E. W. Knightly, 'End-to-end performance and fairness in multihop wireless backhaul networks,' in MobiCom '04: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 2004, pp. 287-301. [41] A. Raniwala and T. Chiueh, 'Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network,' in Proc. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2005, vol. 3, March 2005, pp. 2223-2234. [42] H. Adiseshu, G. Parulkar, and G. Varghese, 'A reliable and scalable striping protocol,' in SIGCOMM '96: Conference Proceedings on Applications, Technologies, Architectures, and Protocols for Computer Communications, New York, USA, 1996, pp. 131-141. [43] A. K. Parekh and R. G. Gallager, 'A generalized processor sharing approach to flow control in integrated services networks: The single node case,' IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-357, June 1993. [44] D. Ferrari and D. Verma, 'A scheme for real-time channel establishment in wide-area networks,' IEEE Journal on Selected Areas in Communications, vol. 8, pp. 368-379, April 1990. [45] IEEE Std. 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations. Institute of Electrical and Electronics Engineers, 1999. [46] H. yu Wei, K. Kim, A. Kashyap, and S. Ganguly, 'On admission of VoIP calls over wireless mesh network,' in Proc. 2006 IEEE International Conference on Communications, ICC 2006, Istanbul, Turkey, June 2006. [47] R. G. Cole and J. H. Rosenbluth, 'Voice over IP performance monitoring,' SIGCOMM Computer Communication Review, vol. 31, no. 2, pp. 9-24, 2001. [48] IEEE Std. 802.16-2004, Air Interface for Fixed Broadband Wireless Access Systems. Institute of Electrical and Electronics Engineers, 2004. [49] IEEE Std. 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations: High-speed Physical Layer in the 5GHz Band. Institute of Electrical and Electronics Engineers, 1999. [50] IEEE Std. 802.11b, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations: High-speed Physical Layer Extension in the 2.4GHz Band. Institute of Electrical and Electronics Engineers, 1999. [51] L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan, 'Efficient network QoS provisioning based on per node traffic shaping,' IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 482{501, August 1996. [52] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. McGraw Hill/The MIT Press, 2001. [53] M. Song, J. Song, and H. Li, 'Implementing a high performance scheduling discipline WF2Q+ in FPGA,' in Proc. IEEE Canadian Conference on Electrical and Computer Engineering 2003, CCECE 2003, vol. 1, Montreal, Canada, May 2003, pp. 187-190. [54] N. R. Figueira and J. Pasquale, 'A schedulability condition for deadline-ordered service disciplines,' IEEE/ACM Transactions on Networking, vol. 5, no. 2, pp. 232-244, April 1997. [55] L. Zhang, 'VirtualClock: A new tra c control algorithm for packet switching networks,' ACM Transactions on Computer Systems, vol. 9, pp. 101-124, May 1991. [56] A. Panagakis, N. Dukkipati, I. Stavrakakis, and J. Kuri, 'Optimal admission control on a single link with a GPS scheduler,' IEEE/ACM Transactions on Networking, vol. 12, no. 5, pp. 865-878, October 2004. [57] http://www.nlanr.net/NA/Learn/packetsizes.html. [58] J. Liebeherr, D. E. Wrege, and D. Ferrari, 'Exact admission control for networks with a bounded delay service,' IEEE/ACM Transactions on Networking, vol. 4, no. 6, pp. 885-901, 1996. [59] G. Beckman and G. Smith, 'Shared networks: making wireless communication affordable,' IEEE Wireless Communications, vol. 12, no. 2, pp. 78-85, April 2005. [60] Femto Forum, 'Interference management in UMTS femtocells,' December 2008. [61] J. Kingman, Poisson Processes. Oxford University Press, 1993. [62] International Telecommunication Union, 'ITU-R recommendations p.1411-3: Propagation data and prediction methods for the planning of short range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz,' 2005. [63] International Telecommunication Union, 'ITU-R recommendations p.1238: Propagation data and prediction models for the planning of indoor radiocommunications systems and radio local area networks in the frequency range 900 MHz to 100 GHz,' 1997. [64] H. Holma and A. Toskala, HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile Communications. J. Wiley & Sons, Ltd., 2006. [65] L. Badia, M. Lindstrom, J. Zander, and M. Zorzi, 'Demand and pricing effects on the radio resource allocation of multimedia communication systems,' in Proc. IEEE GLOBECOM 2003, 2003. [66] H. Lin, M. Chatterjee, S. K. Das, and K. Basu, 'ARC: An integrated admission and rate control framework for competitive wireless CDMA data networks using noncooperative games,' IEEE Transactions on Mobile Computing, vol. 4, no. 3, pp. 243-258, 2005. [67] M. J. Osborne, An Introduction to Game Theory. Oxford University Press, 2004. [68] 3GPP, 'Carrier aggregation in LTE-Advanced,' Ericsson, Tech. Rep. R1-082468, July 2008. [69] L. G. U. Garcia, K. I. Pedersen, and P. E. Mogensen, 'Autonomous component carrier selection: Interference management in local area environments for LTE-Advanced,' IEEE Communications Magazine, vol. 47, no. 9, pp. 110-116, September 2009. [70] L. G. U. Garcia, K. I. Pedersen, and P. E. Mogensen, 'Autonomous component carrier selection for local area uncoordinated deployment of LTE-Advanced,' in Proc. 2009 IEEE Vehicular Technology Conference, VTC2009-Fall, September 2009. [71] 3GPP, 'E-UTRAN X2 general aspects and principles,' Tech. Spec. TS 36.420 V8.1.0, December 2008. [72] 3GPP, 'Algorithms and results for autonomous component carrier selection for LTE-Advanced,' Nokia Siemens Networks, Tech. Rep. R1-084321, November 2008. [73] 3GPP, 'E-UTRA physical layer measurements,' Tech. Spec. TS 36.214, March 2010. [74] 3GPP, 'Primary component carrier selection, monitoring, and recovery,' Nokia Siemens Networks, Tech. Rep. R1-090735, February 2009. [75] S. Haykin, Communication Systems, 4th ed. John Wiley & Sons, Inc., 2001. [76] WINNER, 'WINNER II channel models part I--channel models, Tech. Rep. D1.1.2, September 2007. [77] P. E. Mogensen, I. Z. Kovacs, F. Frederiksen, A. Pokhariyal, K. I. Pedersen, T. Kolding, K. Hugl, and M. Kuusela, 'LTE capacity compared to the Shannon bound,' in Proc. 2007 IEEE Vehicular Technology Conference, VTC2007-Spring, April 2007, pp. 1234-1238. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46682 | - |
| dc.description.abstract | 現今無線網路技術持續不斷地朝著更高的傳輸速度和更大的容量演進,然而由於頻譜資源的限制,下一代的無線網路必須採用各種先進且更具彈性的技術以達到更高的頻譜效率和使用率,這些技術包括:頻寬或無線資源的動態配置、多通道或多載波聚合、超微型基地台(femtocell)的佈建、多輸入多輸出(MIMO)傳輸、合作式多點傳輸等等,本論文針對其中前三項技術提出四個研究主題加以探討。
在第一個主題中,我們提出一個可供無線虛擬網路業者(MVNO)共享網路頻寬或無線資源之系統模型,同時針對此模型設計了一個高效能動態頻寬配置演算法,此演算法根據各虛擬業者之交通特性估計其可能帶來之收入,並利用動態規劃之技巧一次考慮多個時段之收入與可能的損失,以最大化無線頻寬提供者之收益。模擬結果顯示此演算法可有效地提高收益和頻寬使用率。 無線網狀網路的骨幹是由多重跳躍之無線轉運節點所組成,加以無線通訊協定中每傳輸一個封包就必須附加不少的控制虛耗,這容易造成通道使用效率低落,尤其是當網路中傳輸大量小封包時(例如:VoIP之語音封包),無線骨幹將成為網路的瓶頸。為解決此問題,我們在第二個主題中為無線網狀網路之轉運節點設計了一個可同時使用多個平行通道的封包排程器,並加入封包串接功能,藉由良好的通道選擇和封包串接演算法,我們不僅提高了通道的使用效率和骨幹的容量,同時有效壓抑了可能發生之封包順序錯亂問題。此外,我們也針對此排程器架構推導出一個可廣泛適用於多種排程演算法之延遲上限公式,有助於各種允入控制之計算。 在第三個主題中,我們提出一個以無線虛擬網路業者推動超微型基地台佈建之全新模型,此模型探討了超微型基地台傳輸功率設定和原本大型基地台(macro base station)使用者行為之間的互動關係,並將此情境表示成一個雙方各自做最佳化決策的數學問題,透過賽局理論方法,我們求得此問題之奈許平衡解(Nash equilibrium),同時藉由數值範例結果證明,此解法求得之傳輸功率設定可在不減損服務品質的情形下大幅降低對大型基地台使用者之干擾。此結果將有助於處理未來大規模佈建超微型基地台時之干擾問題。 最後一個主題所探討的情境和資源動態分配、多載波聚合(carrier aggregation)、超微型基地台三項技術均相關。在未來LTE-Advanced的環境中,基地台與使用者設備均可同時使用多個載波,未經規劃佈建的超微型基地台將可利用這項特性自動地挑選適當的載波以避免產生過多的干擾。目前3GPP所提出的自主式成分載波選擇(Autonomous Component Carrier Selection, ACCS)演算法在典型家庭上網情境中,很可能因為部分超微型基地台長期佔用資源造成效能低落。為此我們提出透過適當地排序重選載波和功率配置方法來改進其效能,模擬結果證明這兩種方法均可在不需要多增加量測負擔的前提下提升細胞邊緣使用者的流量與頻譜效率。 | zh_TW |
| dc.description.abstract | In the evolution of wireless network technologies, the pursuit of higher efficiency and larger capacity never stops. The next generation of wireless networks aims at achieving these goals via those techniques which can make use of the spectrum with more flexibility and higher order of diversity. These techniques include, to name a few, dynamic allocation of bandwidth/radio resources, aggregation of multiple channels/carriers, deployment of femto base stations, MIMO transmission with up to eight antennas, cooperative multipoint transmission, etc. In this dissertation, we focus on the first three techniques and present results for four research topics.
For the first topic, we present a model for the bandwidth/radio resource sharing in a wireless access network among multiple mobile virtual network operators (MVNOs). Within this model, we propose an efficient scheme to adaptively allocate the bandwidth in accordance with the traffic fluctuation. The proposed bandwidth allocation scheme adopts the technique of dynamic programming to maximize the expected total revenue across multiple stages from the perspective of the facility provider. The design is evaluated by simulation results and proved to be efficient and beneficial. Concerning the second topic, we consider a scenario of aggregating multiple channels in order to serve as the wireless backhaul. Both the multi-hop nature and the large per packet channel access overhead of the wireless backhaul networks can lead to low channel efficiency. The problem may get even worse when there are many applications transmitting packets with small data payloads, e.g. Voice over Internet Protocol (VoIP). In order to cope with this issue, we propose a scheduler that concatenates small packets into large frames and sends them through multiple parallel channels with an intelligent channel selection algorithm between neighboring nodes. Besides the expected capacity improvement, delay bounds and call admission control principles of a broad range of scheduling algorithms for this scheduler have also been derived. With respect to the third topic, we proposes a detailed model for the femtocell-based MVNO and analyzes the dynamics between the femto base station transmit power and its absorbing effect on the macrocell users via game theoretic techniques. The numerical results show that the power settings given by the Nash equilibrium maintain the required QoS level without causing excessive interferences. Such results should support the feasibility of large-scale deployment of femtocell-based MVNOs. The last study of this dissertation is a mixture of the ideas of the three techniques. It proposes a set of low-complexity schemes to improve the spectral efficiency of the femtocells in LTE-Advanced by intelligently allocating multiple carriers. The introduction of carrier aggregation in LTE-Advanced provides the uncoordinatedly deployed femtocells with the opportunity to autonomously mitigate the interferences. In order to address the inefficiency of the autonomous component carrier selection (ACCS) scheme proposed by 3GPP in a typical home Internet access scenario, we propose a scheme to improve the total throughput of a cluster of femtocells by reselecting the carriers according to a well-planned order. Additionally, we also propose to ameliorate the performance of the cell edge users with the fractional power suppression technique. Both the proposed schemes are shown to improve the original ACCS without requiring extra measurements and with only limited additional signaling overhead. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:22:59Z (GMT). No. of bitstreams: 1 ntu-99-D93942012-1.pdf: 2086728 bytes, checksum: d3776c6a59a79d44b2229a0ffa55384c (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Technology Trends and Motivations of the Dissertation . . . . . . 1 1.2 Topics to Be Addressed . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Related Works 9 2.1 Dynamic Spectrum Sharing . . . . . . . . . . . . . . . . . . . . . 9 2.2 Mobile Virtual Network Operator . . . . . . . . . . . . . . . . . . 11 2.3 Packet Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Multichannel Schedulers . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Femtocells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Adaptive Bandwidth Allocation via Dynamic Programming in a Shared Wireless Network 15 3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 15 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Dynamic Programming Algorithm . . . . . . . . . . . . . . . . . . 18 3.3.1 Estimate of the Income . . . . . . . . . . . . . . . . . . . . 18 3.3.2 The Optimality Equation . . . . . . . . . . . . . . . . . . 20 3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . 22 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 A Multichannel Scheduler for High Speed Wireless Backhaul Links with Packet Concatenation 29 4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Multichannel Scheduler with Packet Concatenation . . . . . . . . 32 4.2.1 Network Environment . . . . . . . . . . . . . . . . . . . . 32 4.2.2 The Delayed Channel Model . . . . . . . . . . . . . . . . . 32 4.2.3 The Generic Scheduler Model . . . . . . . . . . . . . . . . 35 4.2.4 The Packet Concatenation Algorithms . . . . . . . . . . . 36 4.2.4.1 Strictly Deadline Ordered (SDO) Algorithm . . . 36 4.2.4.2 Loosened Deadline Order (LDO) Algorithm . . . 38 4.2.5 Channel Selection Algorithm . . . . . . . . . . . . . . . . . 39 4.3 Delay Bound Derivation . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Call Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.1 The Single-Link Scenario . . . . . . . . . . . . . . . . . . . 46 4.5.1.1 Call Admissible Regions . . . . . . . . . . . . . . 47 4.5.1.2 Channel Eciency . . . . . . . . . . . . . . . . . 49 4.5.1.3 Packet Reordering . . . . . . . . . . . . . . . . . 52 4.5.1.4 Comparison with Other Concatenation Schemes . 53 4.5.2 The Multi-hop Scenario . . . . . . . . . . . . . . . . . . . 55 4.5.2.1 Homogeneous Channels . . . . . . . . . . . . . . 56 4.5.2.2 Non-homogeneous Channels . . . . . . . . . . . . 57 4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 61 5 On the Femtocell-based MVNO Model: A Game Theoretic Ap- proach for Optimal Power Setting 63 5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 63 5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Optimization of Femto BS Power . . . . . . . . . . . . . . . . . . 67 5.3.1 Transmission Range and Capacity of the Femtocells . . . . 67 5.3.2 Capacity of the Macrocell . . . . . . . . . . . . . . . . . . 68 5.3.3 User Utilities and the Absorbing Eect . . . . . . . . . . . 69 5.3.4 Two-sided Optimization Problem . . . . . . . . . . . . . . 71 5.3.5 Game Theoretic Solution . . . . . . . . . . . . . . . . . . . 72 5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 76 6 Improving the Autonomous Component Carrier Selection for Home eNodeBs in LTE-Advanced 79 6.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 79 6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Autonomous Component Carrier Selection . . . . . . . . . . . . . 83 6.3.1 PCC Selection . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.2 SCC Selection . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.3 Ineciency of ACCS . . . . . . . . . . . . . . . . . . . . . 85 6.4 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.4.1 Ordered Component Carrier Reselection . . . . . . . . . . 86 6.4.2 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . 87 6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 89 6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 93 7 Conclusions 95 7.1 Contributions of this dissertation . . . . . . . . . . . . . . . . . . 95 7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A Proof of Theorem 1 99 B Acronym 103 Bibliography 115 | |
| dc.language.iso | en | |
| dc.subject | 載波選擇 | zh_TW |
| dc.subject | 動態頻寬配置 | zh_TW |
| dc.subject | 無線虛擬網路業者 | zh_TW |
| dc.subject | 多通道排程器 | zh_TW |
| dc.subject | 封包串接 | zh_TW |
| dc.subject | 超微型基地台 | zh_TW |
| dc.subject | dynamic bandwidth allocation | en |
| dc.subject | carrier selection | en |
| dc.subject | femtocell | en |
| dc.subject | packet concatenation | en |
| dc.subject | multichannel scheduler | en |
| dc.subject | MVNO | en |
| dc.title | 下一代無線網路增進技術之研究 | zh_TW |
| dc.title | On the Efficiency Improving Technologies of Next Generation Wireless Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曾煜棋,張時中,林丁丙,林宗男,謝宏昀,魏宏宇 | |
| dc.subject.keyword | 動態頻寬配置,無線虛擬網路業者,多通道排程器,封包串接,超微型基地台,載波選擇, | zh_TW |
| dc.subject.keyword | dynamic bandwidth allocation,MVNO,multichannel scheduler,packet concatenation,femtocell,carrier selection, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
