Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鹿兒陽(Erh-Yang Lu)
dc.contributor.authorJia-Jun Linen
dc.contributor.author林家駿zh_TW
dc.date.accessioned2021-06-15T05:22:44Z-
dc.date.available2010-07-21
dc.date.copyright2010-07-21
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citation李治逸 (2007) 福山試驗林九種常見樹種的植食現象與葉部特性。國立台灣大學森林環境暨資源學系碩士論文。
張照群 (2007) 溪頭地區柳杉人工林不同冠層開闊度之微環境變化、種子發芽及苗木之生長表現。國立台灣大學森林環境暨資源學系碩士論文。
鹿兒陽、朱珮綺、沈介文、彭靖媛 (2005) 台大實驗林神木溪保護林闊葉林及竹林枯落物動態研究。台大實驗林研究報告 19:147-160。
鹿兒陽、劉佺 (2009) 柳杉林下闊葉樹苗木之食植動態研究。種苗與造林技術之研究與挑戰研討會論文集:53-59。
蔡仲涵 (2009) 溪頭鳳凰山闊葉樹葉部生長動態及不同發育階段之葉片特性。國立台灣大學森林環境暨資源學系碩士論文。
Abul-Fatih, H. A. and F. A. Bazzaz (1980) The biology of Ambrosia trifida L. IV. Demography of plants and leaves. New Phytologist 84: 107-111.
Aerts, R. (1995) The advantages of being evergreen. Trends in Ecology and Evolution 10: 402-407.
Aerts, R. and F. S. Chapin III (2000) The mineral nutrition of wild plants revisited: re-evaluation of processes and patterns. Advances in Ecology Research 30: 1-67.
Allen, D. C. and J. E. Coufal (1984) Introduction to forest entomology. Syracuse University Press, Syracuse, New York.
Alonso, C. and C. M. Herrera (2000) Seasonal variation in leaf characteristics and food selection by larval noctuids on an evergreen Mediterranean shrub. Acta Oecologica 21: 257-265.
Auspurger, C. K. and E. A. Bartlett (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology 23: 517-525.
Baraza, E., J. M. Gómez, J. A. Hódar and R Zamora (2004) Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multifactorial environmental variation. Canadian Journal of Botany 82: 357-364.
Berryman, A. A. (1986) Forest insects: principle and practice of population management. Plenum Press. New York and London.
Casper, B. B., I. N. Forseth, H. Kempenich, S. Seltzer and K. Xavier (2001) Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava. Functional Ecology 15: 740-747.
Chabot, B. F. and D. J. Hicks (1982) The ecology of leaf life spans. Annual Review of Ecology and Systematics 13: 229-259.
Coley, P. D. (1983) Herbivory and defensive characteristics of tree species in a low- land tropical forest. Ecological Monographs 53(2): 209-233.
Coley, P. D. (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74: 531-536.
Coley, P. D. and J. A. Barone (1996) Herbivory and plant defenses in tropical forest. Annual Review of Ecology and Systematics 27: 305-335.
Coley, P. D., J. P. Bryant and F. S. Chapin III (1985) Resource availability and plant antiherbivore defense. Science 22: 895-899.
Dajoz, R (2000) Insects and Forests: the role and diversity of insects in the forest environment. Intercept, New York.
Diemer, M. and C. Körner (1996) Lifetime leaf carbon balances of herbaceous perennial plants from low and high altitudes in the central Alps. Functional Ecology 10: 33-43.
Diemer, M., C. Korner and S. Prock (1992) Leaf life spans in wild perennial herba- ceous plants:a survey and attempts at a interpretation. Oecologia 89: 10-16.
Dudt, J. F. and D. J. Shure (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75: 86-98.
Eckstein, R. L., P. S. Karlsson and M. Weih (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist 143: 177-189.
Editorial Committee of Flora of Taiwan (1996) Flora of Taiwan Vol. 2, second edition. Editorial Committee of the Flora of Taiwan. Taipei.
Escudero, A. and J. M. del Arco (1987) Ecological significance of the phenology of leaf abscission. Oikos 49: 11-14.
Escudero, A., J. M. del Arco, I. C. Sanz and J. Ayala (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients. Oecologia 90: 80-87.
Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C 3 plants. Oecologia 78(1): 9-19.
Feeny, P. (1976) Plant apparency and chemical defense. Recent Advance in Phytochemistry 10: 1-40.
Field, C. and H. A. Mooney (1986) The photosynthesis-nitrogen relationship in wild plants. In Givinish, T. J. (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge.
Fonseca, C. R. (1994) Herbivory and the Long-Lived Leaves of an Amazonian Ant-Tree. The Journal of Ecology 82(4): 833-842.
Forkner, R. E., R. J. Marquis and J. T. Lill (2004) Feeny revisited: condensed tannins as anti-herbivore defense in leaf-chewing herbivore communities of Quercus. Ecological Entomology 29: 174-187.
Greathouse, D. C., W. M. Laetsch and B. O. Phinney (1971) The shoot-growth rhythm of a tropical tree, Theobroma cacao. American Journal of Botany 58(4): 281-286.
Hattenschwiler, S. and P. M. Vitousek (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trees 15: 238-243.
Hikosaka, K. (2005) Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Annals of Botany 95: 521-533.
Hoffman, G. H. and P. B. McEvoy (1985) The mechanism of trichome resistance in Anaphalis magaritacea to the meadow spittlebug Philaenus spumarius. Entomologia Experimentalis et Applicata 39: 123-129.
Hopkins, W. G. and N. P. A. Hüner (2003) Introduction to plant physiology. Third Edition. John Wiley and Sons, New York.
Howe, F. H. and L. C. Westley (1988) Ecological relationship of plants and animals. Oxford University Press, New york.
Jonasson, S. (1995) Resource allocation in relation to leaf retention time of the wintergreen Rhododendron lapponicum. Ecology 76 (2): 475-485.
Kikuzawa, K. (1983) Leaf survival of woody plants in deciduous broad-leaved forests. 1. Tall trees. Canadian Journal of Botany 61: 2133-2139.
Kikuzawa, K. (1989) Ecology and evolution of phonological pattern, leaf longevity and leaf habit. Evolutionary Trends in Plants 3: 105-110.
Kikuzawa, K. (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. American Naturalist 138: 1250-1263.
Kikuzawa, K. and D. Ackerly (1999) Significance of leaf longevity in plants. Plant Species Biology 14: 39-45.
King, D. A. (1994) Influence of Light Level on the Growth and Morphology of Saplings in a Panamanian Forest. American Journal of Botany 81(8): 948-957.
Lowman, M. D. (1992) Leaf growth dynamics and herbivory in five species of Australian rain-forest canopy trees. Journal of Ecology 80: 433-447.
Lowman, M. D. (1995) Herbivore in Australian forests-A comparison of dry sclerophyll and rain forest canopies. Proceedings of the Linnean Society of New South Wales 115: 77- 87.
Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press, San Diego, London.
Matsuki, S. and T. Koike (2006) Comparison of leaf life span, photosynthesis and defensive traits across seven species of deciduous broad-leaf tree seedlings. Annals of Botany 97: 813-817.
Migita, C., Y. Chiba, and T. Tange (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiology 27: 63-70.
Miyaji, K. I., W. S. Da Silva and P. de T. Alvim (1997) Longevity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to position within the canopy and time of emergence. New Phytologist 135:445-454.
Mole, S., J. A. M. Ross and P. G. Waterman (1988) Light-induced variation in phenolic levels in foliage of rain-forest plants. Journal of Chemical Ecology 14: 1-21.
Monk, C. D. (1966) An ecological significance of evergreenness. Ecology 47: 504-505.
Mooney, H. A. and S. L. Gulmon (1982) Constraints on leaf structure and function in reference to herbivory. Bioscience 32: 198–206.
Moore, D. P. and S. B. Chapman (1986) Methods in plants ecology. Second edition. Blackwell Scientific Publication. Oxford, London, Edinburgh.
Muth, N. Z., E. C. Kluger, J. H. Levy, M. J. Edwards and R. A. Niesenbaum (2008) Increased per capita herbivory in the shade: Necessity, feedback, or luxury consumption? Ecoscience 15(2): 182-188.
Nabeshima, E., M. Murakami and T. Hiura (2001) Effects of herbivory and light conditions on induced defense in Quercus crispula. Journal of Plant Research 114: 403-409.
Navas, M., B. Ducout, C. Roumet, J. Richarte, J. Garnier and E. Garnier (2003) Leaf life span, dynamics and construction cost of species from Mediterranean old- fields differing in successional status. New Phytologist 159: 213–228.
Nilsen, E. T., M. R. Sharifi and P. W. Rundel (1987) Leaf dynamics in an evergreen and a deciduous species with even-aged leaf cohorts, from different environments. The American Midland Naturalist 118:46-55.
Nitta, I. and M. Ohsawa (1997) Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecology 130: 71-88.
Oghiakhe, S., L. E. N. Jackai, W. A. Makanjuola and C. J. Hodgson (1992) Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera Pyralidae). Bulletin of Entomological Research 82: 499-505.
Oikawa, S., K. Hikosaka and T. Hirose (2006) Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual herb, Xanthium canadense. New Phytologist 172(1): 104-116.
Osada, N., H. Takeda, K. Kitajima, and R. W. Pearcy (2003) Functional correlates of leaf demographic response to gap release in saplings of a shade-tolerant tree, Elateriospermum tapos. Ecophysiology 137: 181-187.
Peeters, P. J. (2002) Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biological Journal of the Linnean Society 77: 43-65.
Pornon, A., and T. Lamaze (2007) Nitrogen resorption and photosynthetic activity over leave life span in an evergreen shrub, Rhododendron ferrugineum, in a subalpine environment. New physiologist 175: 301-310.
Putz, F. E. (1979) Aseasonality in Malaysian tree phenology. The Malaysian Foester 42: 1-24.
Reich, P. B., C. Uhl, M. B. Walters and D. S. Ellsworth (1991) Leaf life-span as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86: 16–24.
Reich, P. B., C. Uhl, M. B. Walters, L. Prugh and D. S. Ellsworth (2004) Leaf demography and phenology in Amazonian rain forest: a census of 4000 leaves of 23 tree species. Ecological Monographs 74: 3-23.
Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin and W. D. Bowman (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955-1969.
Reich, P. B., I. J. Wright, J. Cavender-Bares, J. M. Craine, J. Oleksyn, M. Westoby and M. B. Walters (2003) The revolution of plant functional variation: traits, spectra and strategies. International Journal of Plant Sciences 164: 143-164.
Reich, P. B., M. B. Walters and D. S. Ellsworth (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62(3): 365-362.
Risley, L. S. (1993) Effect of simulated insect herbivore damage on survival of tree leaves. Environmental Entomology 22(1): 57-61.
Scheirs, J., I. Vandevyvere and L. de Bruyn (1997) Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Annals of the Entomological Society of America 90: 646-654.
Schoettle, A. W. and W. K. Smith (1991) Interrelation between shoot characteristics and solar irradiance in the crown of Pinus contorta ssp. latifolia. Tree Physiology 9: 245-254.
Seiwa, K. (1999) Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Annals of Botany 83: 355-361.
Slansky, F. Jr. and P. Feeny (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47: 209-228.
Southwood, T. R. E., V. K. Brown and P. M. Reader (1986) Leaf palatability, life expectancy and herbivore damage. Oecologia 70: 544–548.
Tsuchiya, T. (1991) Leaf life span of floating-leaved plants. Vegetation 97: 149-160.
Unsicker, S. B. and K. Mody (2005) Influence of tree species and compass bearing on insect folivory of nine common tree species in the West Africa savanna. Journal of Tropical Ecology 21: 227-231.
Waterman, P. G. and S. Mole (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, London.
Williams, K., C. B. Field and H. A. Mooney (1989) Relationships among leaf construction cost, leaf longevity, and light environmental in rain-forest plants of the genus Piper. American Naturalist 133: 198-211.
Wright, J. J., M. Westoby and P. B. Reich (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90:534-543.
Zangeral, A. R., J. G. Hamilton, T. J. Miller, A. R. Croft, K. Oxborough, M. R.
Berenbaum and E. H. de Lucia (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. PNAS 99: 1088-1091.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46678-
dc.description.abstract植物的葉片壽命長度會與其光合作用能力、光環境及植食行為等因素有關,故可用來作為植物適應環境的一個指標。本研究地點位於溪頭台大實驗林,藉由調查生長在柳杉人工林下的6種闊葉樹苗(青剛櫟、狹葉櫟、三斗石櫟、栓皮櫟、瓊楠與大葉釣樟)之葉片動態與各種葉片生理特性,希望能了解光環境、葉片壽命、葉片化學特性與植食行為彼此之間的關係,並從而探討苗木適應環境的機制。本研究的重要發現如下:
根據Kikuzawa (1983)對植物展葉型式的定義,本研究中6種樹種的展葉型式均屬於抽芽型,但落葉型態則較不一致,可區分為間歇性、持續性與L型落葉3種型態。
葉片壽命、葉片氮濃度與葉片總酚類濃度在不同冠層開闊度的4條樣帶間無顯著差異,部分樹種在樣帶間的植食程度(葉面積損失率)則具顯著差異,但趨勢並不一致。
在同抽芽群中,6種苗木抽芽群的葉片壽命在樹種間具顯著差異,但僅有青剛櫟的葉片壽命在不同抽芽群間具顯著差異,最早展葉的第1個抽芽群的葉片壽命顯著較第2、3個抽芽群長。樹種間的葉片壽命則會隨著氮濃度與植食程度的增加而有縮短的趨勢,雖然這樣的相關性並不顯著,而在不考慮具有明顯偏高葉片總酚類濃度之栓皮櫟的情況下,樹種間的葉片壽命與葉片總酚類濃度兩者大致呈正相關,在第1個抽芽群中,5種樹種的葉片壽命與葉片總酚類濃度呈顯著正相關。
在同抽芽群中,6種苗木種間的葉片氮濃度具顯著差異,而在同一樹種內,青剛櫟的葉片氮濃度在抽芽群間具顯著差異,以第1個抽芽群的葉片氮濃度顯著高。6種苗木種間的葉片總酚類濃度具顯著差異,栓皮櫟的葉片總酚類濃度顯著比其他5種樹種高;而在同一樹種內,抽芽群間的葉片總酚類濃度具顯著差異,但葉片總酚類濃度在各樹種抽芽群間差異的趨勢並不一致。
6種苗木種間的植食程度具顯著差異,而在同一樹種中,瓊楠以外的5種樹種之植食程度在抽芽群間皆具有顯著差異,以第2個抽芽群具有顯著較高的植食程度。此外,樹種間植食程度與葉片氮濃度、葉片總酚類濃度及葉硬度皆無顯著的關係,但葉片總酚類濃度與氮濃度兩者具顯著負相關。
本研究的結果顯示葉片壽命與光度、葉片氮濃度、葉片總酚類濃度及植食程度有關,而除了上述因子外,還有許多生物和非生物因子會影響葉片壽命,因此未來可能需要更進一步的研究,才能對葉片壽命的變異有更為精確的解釋。
zh_TW
dc.description.abstractLeaf life-span (LLS) could be affected by the photosynthetic ability of a plant, light availability and herbivory, and thus regarded as an indicator of a plant’s adaptation to the environment. In this study, I investigated the leaf dynamics and the related physiological traits of 6 hardwood species (Cyclobalanopsis glauca, Cyclobalanopsis stenophylloides, Pasania hancei, Quercus variabilis, Beilschmiedia erythrophloia and Lindera megaphylla) in a Cryptomeria japonica plantation in Chitou district, the Experimental Forest, National Taiwan University, central Taiwan to understand the relationships of leaf life-span with light availability, leaf chemical traits and herbivory. The main results were as follows:
According to Kikuzawa (1983), 6 species have a common leaf emergence type --Flush type. However, the patterns of leaf fall were more diverse in these species, belonging to three types--Intermittent, Continuous and L-shaped.
LLS, leaf nitrogen concentrations and leaf total phenols concentrations did not differ significantly among 4 sampling lines with different canopy openness. By contrast, herbivory (percentage of leaf area loss) of some species differed significantly between sampling lines, but the patterns were inconsistent.
Leaf life-spans differed significantly among species within the same cohorts. By contrast, LLS differed significantly among cohorts only in C. glauca, with significantly longer LLS in the 1st cohort than in the 2nd and 3rd. LLS was somewhat negatively correlated with leaf nitrogen concentrations, but the relationship was insignificant. With Q. variabilis excluded, LLS was positively correlated with leaf total phenols concentrations. Within the 1st cohort of 5 species (except Q. variabilis), there was a significantly positive correlation between LLS and leaf total phenols concentrations.
Leaf nitrogen concentrations differed significantly among species. In addition, leaf nitrogen concentrations differed significantly among cohorts in C. glauca, with the concentration higher in the 1st cohort than in the 2nd and 3rd. Leaf total phenols concentrations differed significantly among species, with significantly higher concentration in Q. variabilis than in the other 5 species. Leaf total phenols significantly differed among cohorts in some species, but the patterns were inconsistent.
Herbivory differed significantly among species. With B. erythrophloia excluded, herbivory differed significantly among cohorts. Within the 5 species (except B. erythrophloia), the herbivory was significantly higher in the 2nd cohort. There was no significant correlations between herbivory and leaf nitrogen concentrations, leaf total phenols concentrations and leaf toughness. By contrast, leaf nitrogen concentration was in significantly negative correlation with total phenols concentration.
The results of this study suggest that LLS could be associated with light availability, leaf nitrogen concentrations, leaf total phenols concentrations and herbivory. Beyond the scope of this study, there are many more biotic and abiotic factors which can have influenced LLS. The complexity of LLS demands further studies to help elucidate the mechanisms affecting LLS.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:22:44Z (GMT). No. of bitstreams: 1
ntu-99-R96625009-1.pdf: 688351 bytes, checksum: 26783e50e626c768c52f852393a4dd1b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
圖目錄 VIII
表目錄 X
前言 1
前人研究 3
一、葉片壽命 3
二、葉片壽命的變異性 3
(一) 不同生活型 3
(二) 木本植物 4
三、葉片壽命的推估 4
(一) 展葉與落葉 4
(二) 葉片壽命的推估-成本效益模式 5
(三) 葉片壽命的計算-葉片動態分析 6
四、影響葉片壽命的生育地因子 7
(一) 光度 7
(二) 養分 7
(三) 水分 8
五、與葉片壽命有觀的植物特性 8
(一) 植物生理特性 8
(二) 植食行為 9
六、植物防禦機制 10
七、葉片化學特性與葉片壽命 10
(一) 葉片氮濃度 10
(二) 葉片總酚類濃度 11
八、植物適應環境之策略 11
材料與方法 13
一、試驗地概述 13
二、樹種選擇 13
三、樣區設計 13
四、光度與溼度 14
五、枝條標示 14
六、連續追蹤調查 14
(一) 展葉動態 14
(二) 落葉動態 15
(三) 葉片壽命 15
七、葉片特性分析 16
(一) 樣本採集 16
(二) 物理分析 16
(三) 化學分析 17
八、數據處理與統計分析 18
(一) 葉片動態 18
(二) 冠層開闊度 19
(三) 葉片壽命 19
(四) 葉片特性 19
(五) 葉片壽命與各葉片特性之相關性 19
結果 20
一、葉片動態 20
(一) 展葉 20
(二) 落葉 20
二、葉片壽命 21
三、冠層開闊度的影響 22
(一) 葉片壽命 22
(二) 葉片特性 22
四、葉片特性 23
(一) 葉片硬度 23
(二) 葉片化學性質 23
(三) 植食程度 25
五、葉片壽命與葉片特性之相關性 26
(一) 葉片壽命與氮濃度 26
(二) 葉片壽命與總酚類濃度 26
(三) 葉片壽命與植食程度 26
六、葉片特性間之相關性 27
(一) 葉片氮濃度與總酚類濃度 27
(二) 葉片氮濃度與植食程度 27
(三) 葉片總酚類濃度與植食程度 27
(四) 葉片硬度與葉片植食程度 28
討論 29
一、葉片動態與葉片壽命推估公式 29
(一) 葉片動態 29
(二) 葉片壽命推估公式 31
二、葉片壽命的變異 32
三、光度的影響 33
(一) 葉片壽命 33
(二) 葉片化學特性 34
(三) 植食行為 35
四、葉片壽命和其他葉片特性之關係 36
(一) 葉片化學特性 36
(二) 植食程度 38
五、各葉片特性間之相關性 38
六、環境與植物的生長 40
結論 42
引用文獻 44
Figure
Figure 1. The map of the Experimental Forest, National Taiwan University 52
Figure 2. The arrangements of species in each block 53
Figure 3. The dynamics of leaf emergence of 6 species 54
Figure 4. The representative curves of leaf fall of 6 species 55
Figure 5. Leaf life-spans by cohorts of 6 species in 4 sampling lines 56
Figure 6. Leaf nitrogen concentrations by cohorts of 6 species in sampling lines A, B and C, D 57
Figure 7. Leaf total phenols concentrations by cohorts of 6 species in sampling lines A, B and C, D 58
Figure 8. Percentages of leaf area loss by cohorts of 6 species in sampling lines A, B and C, D 59
Figure 9. The correlations between median leaf life-spans and leaf nitrogen concentrations by cohorts 60
Figure 10. The correlations between median leaf life-spans and leaf total phenols concentrations by cohorts 61
Figure 11. The correlations between median leaf life-spans and percentages of leaf area loss by cohorts 62
Figure 12. The correlations between leaf nitrogen concentrations and leaf total phenols concentrations by cohorts 63
Figure 13. The correlations between leaf nitrogen concentrations and percentages of leaf area loss by cohorts 64
Figure 14. The correlations between leaf total phenols concentrations and percentages of leaf area loss by cohorts 65
Figure 15. The correlations between percentages of leaf area loss and leaf toughness by cohorts 66
Figure 16. The observed leaf fall curves of this study and the models proposed by Navas et al. (2003) 67
Figure 17. The relationship of Lave and LNavas in each of 6 species 68
Figure 18. The relationship of Lave and Lmed in each of 6 species 69
Table
Table 1. Scientific names, abbreviations, Chinese names, families, numbers of trees, mean initial tree heights and mean initial diameters 70
Table 2. The canopy openness (%) of planting blocks in 4 sampling lines 71
Table 3. Number of branches of each cohort of each species 72
Table 4. Month of leaf emergence and percentage of chosen branches of 6 species for leaf fall curves 73
Table 5. ANOVA results on the effects of line, species and cohort on leaf life-span 74
Table 6. Leaf life-spans (days) by cohorts of 6 species 75
Table 7. Leaf toughness (g mm-2) of 6 species 76
Table 8. ANOVA results on the effects of sampling line, species and cohort on the concentrations of leaf nitrogen and total phenols 77
Table 9. Leaf nitrogen concentrations (% dry weight) by cohorts of 6 species in 2 sampling dates 78
Table 10. Leaf total phenols concentrations (mg g-1) by cohorts of 6 species in 2 sampling dates 79
Table 11. ANOVA results on the effects of sampling line, species and cohort on the percentage of leaf area loss 80
Table 12. Percentages of leaf area loss (%) by cohorts of 6 species in 4 sampling lines 81
Table 13. Absolute growth of tree height (cm year-1) of 6 species 82
Table 14. Relative growth of tree height (cm cm-1 year-1) of 6 species 83
Table 15. Absolute growth of basal diameter (cm cm-1 year-1) of 6 species 84
Table 16. Relative growth of basal diameter (cm cm-1 year-1) of 6 species 85
Table 17. The mortality rate (%) of 6 species in 4 sampling lines 86
dc.language.isozh-TW
dc.subject葉片特性zh_TW
dc.subject葉片動態zh_TW
dc.subject葉片壽命zh_TW
dc.subject植食行為zh_TW
dc.subject光環境zh_TW
dc.subjectherbivoryen
dc.subjectlight availabilityen
dc.subjectleaf traitsen
dc.subjectleaf dynamicsen
dc.subjectLeaf life-spanen
dc.title柳杉人工林下栽植闊葉樹苗木之葉片壽命與相關特性zh_TW
dc.titleLeaf Life-span and the Related Leaf Traits of Hardwood Seedlings Planted under Cryptomeria japonica Plantationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳子英(Tze-Ying Chen),顏江河(Chiang-Her Yen),曾彥學(Yen-Hsueh Tseng)
dc.subject.keyword葉片壽命,葉片動態,葉片特性,光環境,植食行為,zh_TW
dc.subject.keywordLeaf life-span,leaf dynamics,leaf traits,light availability,herbivory,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-07-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
672.22 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved