Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46675
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王暉
dc.contributor.authorJing-Shian Baien
dc.contributor.author白景賢zh_TW
dc.date.accessioned2021-06-15T05:22:33Z-
dc.date.available2016-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1] A. Tessmann, L. Verweyen, M. Neumann, H. Massler, W. H. Haydl, A. Hulsman, and M. Schlechtweg, “A 77 GHz GaAs pHEMT Transceiver MMIC for Automotive Sensor Applications,” Proc. IEEE GaAs Integr. Circuits Symp. Dig., 1999, pp. 207–210.
[2] J. Lee, Y. Chen, and Y. Huang, “A Low-Power Low Cost Fully-Integrated 60-GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,” IEEE J. Solid-State Circuits, vol. 45, pp. 264–275, Feb. 2010.
[3] C. Marcu, D. Chowdhury, C. Thakkar, J. Park, L. Kong, M. Tabesh, Y.Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E.Alon, and A. M. Niknejad, “A 90 nm CMOS low-power 60 GHz Transceiver With Integrated Baseband Circuitry,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3434–3447, Dec. 2009.
[4] C. Y. Law, A.-V. Pham, “A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS,” ISSCC Dig. Tech. Papers, pp.426-427, Feb. 2010.
[5] R. E. Kasody, G. S. Dow, A. K. Sharma, M. V. Aust, D. Yamauchi, R.Lai, M. Biedenbender, K. L. Tan, and B. R. Allen, “A High Efficiency V-Band Monolithic HEMT Power Amplifier,” IEEE Microwave and Guided Wave Lett., vol. 4, No. 9, pp. 303-304, Sep. 1994.
[6] S. Chaki, H. Amasuga, S. Goto, K. Kanaya, Y. Yamamoto, T. Oku, and T. Ishikawa,“ A V-band High Power and High Gain Amplifier MMIC Using GaAs PHEMT Technology,” IEEE Compound Semicond. Integr. Circuits Symp., pp. 1-4,
132
Oct. 2008.
[7] C. Karnfelt, R. Kozhuharov, H. Zirath, and I. Angelov,“ High-purity 60-GHz-band Single-Chip x8 Multipliers in pHEMT and mHEMT Technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp.2887–2897, Jun. 2006.
[8] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna,A. Alping, and C. Fager, “Single-chip 60 GHz Transmitter and Receiver MMICs in a GaAs mHEMT Technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 801-804, Jun. 2006.
[9] H.-Y. Chang, H. Wang, M. Yu, and Y. Shu, “A 77-GHz MMIC Power Amplifier for Automotive Radar Applications,” IEEE Microwave and Wireless Components Lett., vol. 13, pp. 143-145, Apr. 2003.
[10] C. F. Campbell, S. Moochalla, D. Daugherty, W. J. Taft, M.-Y. Jao and D. Fanning, “ V-Band Power Amplifier MMICs Exhibiting Low Power Slump Characteristics Utilizing a Production Released 0.15-um GaAs pHEMT Process, ” IEEE MTT-S Symposium Dig., 2009, pp. 433-436.
[11] J. Chen and A. M. Niknejad, “A Compact 1V 18.6dBm 60GHz Power Amplifier in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 432-433, Feb. 2011.
[12] U. R. Pfeiffer and D. Goren, “A 23 dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 857–865, May 2007.
[13] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001
[14] W. M. T. Kong, S. C. Wang, P.-C. Chao, D.-W. Tu, K. Hwang, O. S. A.Tang, S.-M. Liu, P. Ho, K. Nichols, and J. Heaton, “Very High Efficiency V-Band Power InP HEMT MMICs,” IEEE Electron Device Lett., vol.21, pp. 521–523, Nov. 2000.
133
[15] M. Micovic, A. Kurdoghlian, H. P. Moyer, P. Hashimoto, M. Hu, M. Antcliffe, P. J. Willadsen, W. S. Wong, R. Bowen, I. Milosavljevic, Y. Yoon, A. Schmitz, M. Wetzel, C. McGuire, B. Hughes, and D. H. Chow,“ GaN MMIC PAs for E-Band (71 GHz - 95 GHz) Radio,” IEEE Compound Semicond. Integr. Circuits Symp., pp. 1-4, Oct. 2008.
[16] M. Micovic, A. Kurdoghlian, K. Shinohara, S. Burnham, I. Milosavljevic M. Hu, A. Corrion, A. Fung, R.Lin, L. Samoska, P. Kangaslahti, B. Lambrigtsen, P. Goldsmith, W.S. Wong, A. Schmitz, P.Hashimoto, P. J. Willadsen and D. H. Chow, “W-Band GaN MMIC with 842 mW Output Power at 88 GHz,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 237-239, Jun. 2010.
[17] H. Wang, L. Samoska, T. Gaier, A. Peralta, H.-H. Liao, Y. C. Leong,S. Weinreb, Y. C. Chen, M. Nishimoto, and R. Lai, “Power-Amplifier Modules Covering 70–113 GHz using MMICs,” IEEE Trans. Microw.Theory Tech., vol. 69, no. 1, pp. 9–16, Jan. 2001.
[18] K. Kamozaki, N. Kurita, W. Hioe, T. Tanimoto, H. Ohta, T. Nakamura, and H. Kondoh, “A 77 GHz T/R MMIC Chip Set for Automotive Radar Systems,” in 19th Annu. IEEE GaAs Integr. Circuits Symp. Dig., Anaheim, CA, Oct. 1997, pp. 275–278.
[19] H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R.Dabkowski, “77 GHz Fully-MMIC Automotive Forward-Looking Radar,” in 21st Annu. GaAs IC Symp., 1999, pp. 211–214.
[20] H. J. Siweris, A. Werthof, H. Tischer, T. Grave, H. Werthmann, R. H.Rasshofer, and W. Kellner, “A mixed Si and GaAs Chip Set for Millimeter-Wave Automotive Radar Front-ends,” in Proc. Radio Frequency Integrated Circuit Symp., Jun. 2000, pp. 191–194.
134
[21] Min Han, Sung-Woon Moon, Seok-Gyu Choi, Tae-Jong Baek, Byeung-Ok Lim, Dan An, Mi-ra Kim, Sam-Dong Kim, and Jin-Koo Rhee, “V-band CPW Balanced Medium Power Amplifier for 60 GHz Wireless LAN application,” in IEEE Asia-Pacific Conference Proceedings, vol. 2, Dec. 2005, pp. 4 – 7.
[22] C. K. Pao, G. L. Lan, C. S. Wu, A. Igawa, M. Hu, J. C. Chen, and Y. C. Shih, “V-Band High-Efficiency monolithic pseudomorphic HEMT power amplifiers,” IEEE Microwave and Guided Wave Lett., vol. 2, no. 10, pp. 394–396, Oct. 1992.
[23] 陳炳佑撰,三、五族電晶體模型與Ka頻段放大器設計,國立台灣大學電機工程研究所碩士論文,2002年。
[24] “0.15-um InGaAs pHEMT Low Noise Device Model Handbook,” WIN Semiconductors Inc., 2005.
[25] “0.15-um InGaAs pHEMT Power Device Model Handbook,” WIN Semiconductors Inc., 2010.
[26] http://www.triquint.comprodservfoundryGaN.cfm
[27] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1992, pp. 297–300.
[28] I. Angelov, H. Zirath, N. Rorsmann, “A new Empirical Nonlinear Model for HEMT and MESFET Devices, ” IEEE Trans. Microw.Theory Tech., vol. 40, no. 12, pp. 2258–2266, Dec. 1992.
[29] 黃品澄撰,寬頻微波功率放大器之研究,國立台灣大學電信工程學研究所博士論文,2011年。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46675-
dc.description.abstract本論文中,設計並實現三個高頻放大器,分別包含一個V頻段緩衝放大器以及V頻段功率放大器,最後為一個67 GHz高輸出功率之功率放大器,皆採用高速電子遷移率電晶體(pHEMT)製程製作。
論文第一部分描述了一個應用於V頻段的緩衝放大器,採用0.15微米低雜訊pHEMT製程,此電路為兩級疊接組態的放大器設計。高頻的疊接組態電路通常會使用共面波導方式來作電路佈局,以減少寄生效應,而此電路在量測時,在60 GHz可以有約18 dB的小訊號增益以及3.5 dBm的飽和輸出功率。
論文第二部分呈現了一個操作於V頻段的高輸出功率之功率放大器,採用0.15微米功率 pHEMT製程,此電路亦為兩級的電路設計,利用疊接組態的架構來當驅動級,共源級架構當輸出級,以達到較大的輸出功率,對於架構的選取以及電路佈局方式亦會詳加說明,最後量測的結果,在操作頻率為60 GHz時,可以達到約22 dBm的輸出飽和功率。
論文第三部分呈現了一個操作於67 GHz的高輸出功率之功率放大器,採用0.15微米低雜訊pHEMT製程,此電路為兩級的電路設計,兩級電路皆採用疊接組態來達到較大的增益,在功率預算上的考慮,以及最後使用藍吉耦合器作平衡式的架構,可以達到增加輸出功率以及改善回返損耗的效果,而最後在量測和模擬上有不少誤差,這部分也會提出來討論。
由於電晶體高頻模型不準確,導致所設計的電路在量測和模擬結果上有不少誤差,為了使得模擬和量測結果更加吻合,根據穩懋所提供的電晶體小訊號量測資料,重新萃取了小訊號模型的參數,並且根據這些電晶體模型參數及直流-電流電壓曲線來建立Angelov非線性電晶體模型,而使量測和模擬結果有更佳的一致性。
zh_TW
dc.description.abstractIn this thesis, three high frequency amplifiers are designed and investigated, including a V-band buffer amplifier, a V-band power amplifier and a 67-GHz power amplifier. These three circuits are implemented using pseudomorphic high electron mobility transistor (pHEMT) technology.
The first part of this thesis describes the design of a buffer amplifier for V-band applications using 0.15-um low-noise pHEMT technology. The circuit consists of two stages cascode amplifier and designed using coplanar waveguide (CPW) structure to reduce the parasitic effect. The measured small signal gain is about 18 dB, and the measured saturation output power is about 3.5 dBm at 60 GHz.
A power amplifier with high output power in 0.15-um power pHEMT technology is presented next. This circuit is also a two-stage design adopting cacode configuration as the driver stage and common-source configuration as the power stage. The measured saturation output power is about 22 dBm at 60 GHz.
Finally, a 67-GHz power amplifier using 0.15-um low-noise pHEMT technology is presented. This circuit is realized with two-stage cascode configuration to achieve high gain and high output power. The consideration of power budget and balanced structure using Lange coupler are discussed in this chapter. There are discrepancies between simulation results and measurement results, and the reason will be discussed also.
Because of the inaccuracy of the transistor model at higher frequency, the simulation results of the circuit do not agree with the measurement results. The linear model parameters are re-generated with the measured device data provided by the foundry WIN Semiconductors. Based on the new linear model parameters and the dc-IV curves, the Angelov model is established. With the new nonlinear model, the simulation results and measurement results of the circuits show better agreement.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:22:33Z (GMT). No. of bitstreams: 1
ntu-100-R98942015-1.pdf: 2717024 bytes, checksum: 525678bad890b4f5214076849e6a7f8c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.3 Contributions 4
1.4 Thesis Organization 6
Chapter 2 Design of A V-band Buffer Amplifier in 0.15-um Low-Noise HEMT Process 7
2.1 V-band Buffer Amplifier Circuit Design 7
2.1.1 Circuit Design 7
2.1.2 Simulated Results 12
2.2 Experimental Results 15
2.3 Discussions 17
2.4 Summary 30
Chapter 3 A 60-GHz Power Amplifier with 22-dBm Output Power using 0.15-um GaAs pHEMT Process 31
3.1 V-band Power Amplifier Circuit Design 31
3.1.1 Block Diagram and Power Budget 31
3.1.2 Circuit Design 33
3.1.3 Stability Consideration 45
3.1.4 Layout Consideration 55
3.1.5 Simulated Results 55
3.2 Experimental Results 60
3.3 Discussions 62
3.4 Summary 80
Chapter 4 A 67-GHz Power Amplifier with 19.6-dBm Output Power using 0.15-um GaAs pHEMT Process 83
4.1 Circuit Design 83
4.1.1 Block Diagram and Power Budget 83
4.1.2 Circuit Design 84
4.1.3 Stability Consideration 93
4.1.4 Layout Consideration 103
4.1.5 Simulated Results 103
4.2 Experimental Results 108
4.3 Discussions 111
4.4 Summary 126
Chapter 5 Conclusion 129
REFERENCE 131
dc.language.isoen
dc.subject高速電子遷移率電晶體zh_TW
dc.subject功率放大器zh_TW
dc.subjectV頻段zh_TW
dc.subjectPower Amplifier (PA)en
dc.subjectV-banden
dc.subjectpseudomorphic high electron mobility transistor (pHEMT)en
dc.title使用假晶式高速電子遷移率電晶體之V頻段疊接功率放大器之研究zh_TW
dc.titleResearch of V-band pHEMT Cascode Power Amplifiersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張盛富,蔡作敏,張鴻埜,陳咨吰
dc.subject.keyword功率放大器,V頻段,高速電子遷移率電晶體,zh_TW
dc.subject.keywordPower Amplifier (PA),V-band,pseudomorphic high electron mobility transistor (pHEMT),en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
2.65 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved