Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorNain-En Luen
dc.contributor.author呂念恩zh_TW
dc.date.accessioned2021-06-15T05:21:17Z-
dc.date.available2015-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-07-19
dc.identifier.citation1. Anstee, D.J., Red cell genotyping and the future of pretransfusion testing. Blood, 2009. 114(2): p. 248-256.
2. Buetens, O.W. and P.M. Ness, Red blood cell transfusion in autoimmune hemolytic anemia. Current Opinion in Hematology, 2003. 10(6): p. 429-433.
3. Landsteiner, K. and A.S. Wiener, Studies on an Agglutinogen (Rh) in human blood reacting with anti-rhesus sera and with human isoantibodies. Journal of Experimental Medicine, 1941. 74(4): p. 309-320.
4. Race, R.R., An 'incomplete' antibody in human serum. Nature, 1944. 153: p. 771-772.
5. Fisher, R.A. and R.R. Race, Rh Gene Frequencies in Britain. Nature, 1946. 157(3976): p. 48-49.
6. Ogasawara, K., et al., Molecular genetic analysis of variant phenotypes of the ABO blood group system. Blood, 1996. 88(7): p. 2732-7.
7. Wang, X.Z., et al., Detection of RhDel in RhD-negative persons in clinical laboratory. J Lab Clin Med, 2005. 146(6): p. 321-25.
8. Issitt, P.D. and D.J. Anstee, Applied Blood Group Serology 4th ed . 1998, Montgomery Scientific Publications: Durham.
9. Shao, C.P., Transfusion of RhD-positive blood in 'Asia type' DEL recipients. N Engl J Med, 2010. 362(5): p. 472-3.
10. Okubo, Y., et al., A D variant, Del? Transfusion, 1984. 24(6): p. 542.
11. Mak, K.H., et al., Rh phenotypes of Chinese blood donors in Hong Kong, with special reference to weak D antigens. Transfusion, 1993. 33(4): p. 348-51.
12. Hasekura, H., et al., Flow cytometric studies of the D antigen of various Rh phenotypes with particular reference to Du and Del. Transfusion, 1990. 30(3): p. 236-8.
13. Zimmermann, T., et al., Alloimmu ne hemolytic anemia after liver transplantation from an ABO-identical and Rh-nonidentical donor in a patient with postpartum Budd-Chiari syndrome. Transpl Int, 2006. 19(6): p. 514-5.
14. Li, Q., et al., Molecular basis of the RHD gene in blood donors with DEL phenotypes in Shanghai. Vox Sang, 2009. 97(2): p. 139-46.
15. Vogel, F., The mutation rate of the Rh-loci; a critical review. Am J Hum Genet, 1954. 6(2): p. 279-83.
16. Van Kim, C. L., Colin, Y., and Cartron, J. P., Rh proteins: key structural and functional components of the red cell membrane. Blood Rev, 2006. 20(2): p. 93-110.
17. Colin, Y., et al., Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood, 1991. 78(10): p. 2747-52.
18. Bowman, J., Rh-immunoglobulin: Rh prophylaxis. Best Pract Res Clin Haematol, 2006. 19(1): p. 27-34.
19. Bowman, J., Thirty-five years of Rh prophylaxis. Transfusion, 2003. 43(12): p. 1161-6.
20. Mollison, P.L., C.P. Engelfriet, and M. Contreras, Blood Transfusion in Clinical Medicine. 9th ed. 1993, Oxford: Blackwell.
21. Zimring, J. C., and Hendrickson, J. E., The role of inflammation in alloimmunization to antigens on transfused red blood cells. Curr Opin Hematol, 2008. 15(6): p. 631-5.
22. Schonewille, H., Haak, H. L., and van Zijl, A. M., Alloimmunization after blood transfusion in patients with hematologic and oncologic diseases. Transfusion, 1999. 39(7): p. 763-71.
23. Chuansumrit, A., et al., HLA alloimmunization in patients receiving multitransfusions of red blood cells. Southeast Asian J Trop Med Public Health, 2001. 32(2): p. 419-24.
24. Rosse, W.F., et al., Transfusion and alloimmunization in sickle cell disease. The Cooperative Study of Sickle Cell Disease. Blood, 1990. 76(7): p. 1431-7.
25. Arce, M.A., et al., Molecular cloning of RhD cDNA derived from a gene present in RhD-positive, but not RhD-negative individuals. Blood, 1993. 82(2): p. 651-5.
26. Mouro, I., et al., Molecular genetic basis of the human Rhesus blood group system. Nat Genet, 1993. 5(1): p. 62-5.
27. Bugert, P., et al., RhCE protein variants in Southwestern Germany detected by serologic routine testing. Transfusion, 2009. 49(9): p. 1793-802.
28. Doscher, A., et al., RHCE alleles detected after weak and/or discrepant results in automated Rh blood grouping of blood donors in Northern Germany. Transfusion, 2009. 49(9): p. 1803-11.
29. Cartron, J. P., Defining the Rh blood group antigens. Biochemistry and molecular genetics. Blood Rev, 1994. 8(4): p. 199-212.
30. Stratton, F., The human blood groups. Nature, 1952. 170(4333): p. 821-3.
31. Cameron, J.W. and L.K. Diamond, Chemical, clinical, and immunological studies on the products of human plasma fraction XX1X. Serum albumin as a diluent for Rh typing reagents. Journal of Clinical Investigation, 1945. 24(6): p. 793-801.
32. Haigh, T.J. and S.A. Fairham, Advantages of low ionic strength saline (liss) techniques in blood bank management. Med Lab Sci, 1980. 37(2): p. 119-25.
33. Knight, R. C., and de Silva, M., New technologies for red-cell serology. Blood Rev, 1996. 10(2): p. 101-10.
34. Rose, P.E. and G.R. Struthers, Serological reactions using low ionic strength saline (LISS) in patients with rheumatoid arthritis. Med Lab Sci, 1983. 40(4): p. 391-2.
35. Kulkarni, S., Mohanty, D., Gupte, S., Vasantha, K., and Joshi, S., Flow cytometric quantification of antigen D sites on red blood cells of partial D and weak D variants in India. Transfus Med, 2006. 16(4): p. 285-9.
36. Hughes-Jones, N.C., B. Gardner, and P.J. Lincoln, Observations of the number of available c,D, and E antigen sites on red cells. Vox Sang, 1971. 21(3): p. 210-6.
37. Jones, J. W., Lloyd-Evans, P., and Kumpel, B. M., Quantitation of Rh D antigen sites on weak D and D variant red cells by flow cytometry. Vox Sang, 1996. 71(3): p. 176-83.
38. Merry, A.H., C. Hodson, and S. Moore, Variation in the level of Rh(D) antigen expression. Transfusion, 1988. 28(4): p. 397-8.
39. Szymanski, I.O. and P. Araszkiewicz, Quantitative studies on the D antigen of red cells with the Du phenotype. Transfusion, 1989. 29(2): p. 103-5.
40. Van Loghem, J.J., Production of Rh agglutinins anti-C and anti-E by artificial immunization of volunteer donors. Br Med J, 1947. 2(4536): p. 958.
41. Mollison, P.L. and M. Cutbush, Haemolytic Disease of the Newborn. British Medical Journal, 1949. 1(4599): p. 364-364.
42. Prasad, M. R., Krugh, D., Rossi, K. Q., and O'Shaughnessy, R. W., Anti-D in Rh positive pregnancies. Am J Obstet Gynecol, 2006. 195(4): p. 1158-62.
43. Argall, C.I., J.M. Ball, and E. Trentelman, Presence of anti-D antibody in the serum of a Du patient. Journal of Laboratory and Clinical Medicine, 1953. 41(6): p. 895-8.
44. Ogasawara, K., R. Yabe, and T. Mazda, Del red cells sensitized with anti-D are not phagocytosed by monocytes. Transfusion, 1988. 28(6): p. 603-4.
45. 雍建輝, 新世紀輸血醫學 : 問題導向. 1st ed. 2008,合記出版社: 台灣.
46. Meyer, O., et al., Rapid detection of heparin-induced platelet antibodies with particle gel immunoassay (ID-HPF4). Lancet, 1999. 354(9189): p. 1525-6.
47. Cate, J.C.t. and N. Reilly, Evaluation and implementation of the gel test for indirect antiglobulin testing in a community hospital laboratory. Arch Pathol Lab Med, 1999. 123(8): p. 693-7.
48. Dittmar, K., et al., Comparison of DATs using traditional tube agglutination to gel column and affinity column procedures. Transfusion, 2001. 41(10): p. 1258-62.
49. Greco, V.A., et al., Detection of antibodies in acid eluates with the gel microcolumn assay. Transfusion, 2002. 42(6): p. 698-701.
50. Novaretti, M.C., et al., Comparison of conventional tube test technique and gel microcolumn assay for direct antiglobulin test: a large study. J Clin Lab Anal, 2004. 18(5): p. 255-8.
51. Weisbach, V., et al., Comparison of the performance of microtube column systems and solid-phase systems and the tube low-ionic-strength solution additive indirect antiglobulin test in the detection of red cell alloantibodies. Transfus Med, 2006. 16(4): p. 276-84.
52. Das, S.S., R. Chaudhary, and D. Khetan, A comparison of conventional tube test and gel technique in evaluation of direct antiglobulin test. Hematology, 2007. 12(2): p. 175-8.
53. Jones, C.D., L.M. Gould, and S. Lee, An evaluation of a solid phase red cell adherence test for detecting platelet-associated IgG in immune thrombocytopenia. American Journal of Clinical Pathology, 1990. 93(4): p. 552-4.
54. Leach, M. F., and AuBuchon, J. P., Use of enzyme treatment to enhance reactivity of HLA and platelet-specific antibodies in solid-phase RBC adherence assays. Transfusion, 2002. 42(4): p. 476-80.
55. Lai, M., et al., Detection of weak D with a fully automated solid-phase red cell adherence system. Transfusion, 2005. 45(5): p. 689-93.
56. Vongchan, P., W. Nawarawong, and R.J. Linhardt, Modification of solid phase red cell adherence assay for the detection of platelet antibodies in patients with thrombocytopenia. American Journal of Clinical Pathology, 2008. 130(3): p. 455-66.
57. Stewart, M.W., et al., Rapid detection of anticardiolipin antibodies. Am J Hematol, 1998. 57(4): p. 315-9.
58. Socher, I., et al., A simple and practical agglutination assay for the detection of human anti-mouse antibodies. Hum Antibodies, 2006. 15(4): p. 133-7.
59. Meyer, O., et al., A simple and practical assay for the antigen-specific detection of platelet antibodies. Transfusion, 2006. 46(7): p. 1226-31.
60. Flegel, W.A., et al., Rh phenotype prediction by DNA typing and its application to practice. Transfus Med, 1998. 8(4): p. 281-302.
61. Anstee, D.J., Goodbye to agglutination and all that? Transfusion, 2005. 45(5): p. 652-3.
62. Hosseini-Maaf, B., et al., An extensive polymerase chain reaction-allele-specific polymorphism strategy for clinical ABO blood group genotyping that avoids potential errors caused by null, subgroup, and hybrid alleles. Transfusion, 2007. 47(11): p. 2110-25.
63. Denomme, G.A. and W.A. Flegel, Applying molecular immunohematology discoveries to standards of practice in blood banks: now is the time. Transfusion, 2008. 48(11): p. 2461-75.
64. Krog, G.R., F.B. Clausen, and M.H. Dziegiel, Quantitation of RHD by real-time polymerase chain reaction for determination of RHD zygosity and RHD mosaicism/chimerism: an evaluation of four quantitative methods. Transfusion, 2007. 47(4): p. 715-22.
65. Hyono, A., et al., Impacts of papain and neuraminidase enzyme treatment on electrohydrodynamics and IgG-mediated agglutination of type A red blood cells. Langmuir, 2009. 25(18): p. 10873-85.
66. Mollison, P.L., C.P. Engelfriet, and M. Contreras, In Blood Transfusion in Clinical Medicine 10th ed. 1997, Oxford: Blackwell Science.
67. Pollack, W., et al., A Study of the Forces Involved in the Second Stage of Hemagglutination. Transfusion, 1965. 5: p. 158-83.
68. Issitt, P.D. and D.J. Anstee, The Immune Response, Production of Antibodies, Antigen-Antibody Reactions., in In Applied Blood Group Serology, P.D. Issitt and D.J. Anstee, Editors. 1998, Montgomery Scientific Publications: Durham.
69. Frazer, K. and J.D. Capra, Immunoglobulins: Structure and Function., in In fundamental Immunology, W.E. Paul, Editor. 1998, Raven Press: New York.
70. Diamond, L.K. and N.M. Abelson, The Importance of Rh Inhibitor Substance in Anti-Rh Serums. Journal of Clinical Investigation, 1945. 24(1): p. 122-6.
71. 林媽利, 輸血醫學. 3rd ed. 2005,健康文化事業股份有限公司: 台灣.
72. Zhang, Q. and L.H. Guo, Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjug Chem, 2007. 18(5): p. 1668-72.
73. Wang, Y., et al., Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjug Chem, 2001. 12(5): p. 807-16.
74. Cheng, C., et al., Functionalized thermoresponsive micelles self-assembled from biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for tumor cell target. Bioconjug Chem, 2008. 19(6): p. 1194-201.
75. Yang, W., et al., Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem, 2009. 44(2): p. 862-8.
76. Maly, J., et al., The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels. Nanotechnology, 2009. 20(38): p 385101-385111.
77. Maeda, Y., T. Yoshino, and T. Matsunaga, Novel nanocomposites consisting of in vivo-biotinylated bacterial magnetic particles and quantum dots for magnetic separation and fluorescent labeling of cancer cells. Journal of Materials Chemistry, 2009. 19(35): p. 6361-6366.
78. MacKinnon, N., et al., Liposome-Hydrogel Bead Complexes Prepared via Biotin-Avidin Conjugation. Langmuir, 2009. 25(16): p. 9413-9423.
79. Zeng, X., et al., A Potential Targeting Gene Vector Based on Biotinylated Polyethyleneimine/Avidin Bioconjugates. Pharmaceutical Research, 2009. 26(8): p. 1931-1941.
80. Huang, F., et al., Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer, 2005. 46(25): p. 12010-12015.
81. Aqil, A., et al., Coating of gold nanoparticles by thermosensitive poly(N-isopropylacrylamide) end-capped by biotin. Polymer, 2008. 49(5): p. 1145-1153.
82. Cabric, S., et al., Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes, 2007. 56(8): p. 2008-15.
83. Teramura, Y. and H. Iwata, Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug Chem, 2008. 19(7): p. 1389-95.
84. Teramura, Y. and H. Iwata, Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials, 2009. 30(12): p. 2270-5.
85. Hermanson, G.T., Bioconjugate techniques 2nd ed. 1996, San Diego Academic Press.
86. Zheng, C., G. Ma, and Z. Su, Native PAGE eliminates the problem of PEG-SDS interaction in SDS-PAGE and provides an alternative to HPLC in characterization of protein PEGylation. Electrophoresis, 2007. 28(16): p. 2801-7.
87. Dunker, A.K. and R.R. Rueckert, Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem, 1969. 244(18): p. 5074-80.
88. Phang, T., I. Ji, and T.H. Ji, No need of acetic acid for processing polyacrylamide gels. Anal Biochem, 1996. 234(1): p. 96-7.
89. Sreeramulu, G. and N.K. Singh, Destaining of Coomassie Brilliant Blue R-250-stained polyacrylamide gels with sodium chloride solutions. Electrophoresis, 1995. 16(3): p. 362-5.
90. Castro, D., et al., Development of Immunological Techniques for the Detection of the Potential Causative Agent of the Brown Ring Disease. Aquaculture, 1995. 132(1-2): p. 97-104.
91. Choi, Y., et al., Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chemistry & Biology, 2005. 12(1): p. 35-43.
92. Skoog, et al., Fundamental of analytical chemistry. 8th ed. 2004: Brooks/Cole, a divison of Thomson Learning, Inc.
93. Kindt, T.J., R.A. Glodsby, and B.A. Osborne, Kuby immunology. 6th ed. 2003, New York: W. H. Freeman and Company.
94. Nakane, P.K., Application of Peroxidase-Labeled Antibody to Immunoelectron Microscopy. Histochemical Journal, 1974. 6(1): p. 84-85.
95. Nakanishi, K., Infared Absorption Spectroscopy. 1st ed. 1962, Tokyo: Nankodo Company.
96. Cai, Y., et al., Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes. Journal of Membrane Science, 2008. 310(1-2): p. 184-196.
97. Yu, D., J. Yang, and J. Xie, Part 5: Nuclear Magnetic Resonance, in Handbook of Analytical Chemistry. 1989, Chemistry Industry Press: Peking.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46655-
dc.description.abstract有鑒於血型 RhD 型之中的 Del 血型(D elution)無法快速的藉由一般捐血中心的血型篩檢的方式(Ortho BioVue System Microtyping card)來判別為 RhD 陽性反應,造成日後所產生的輸血上之疾病,如新生兒溶血症(hemolytic disease of newborn, HDN)。而傳統篩檢 Del 血型的方法,吸附沖出法過於費時(1小時)、須過多檢體(1c.c.紅血球)與花費過高(1c.c.試劑),無法應用於輸血前試驗(pretansfusion testing)。針對此問題,我們設計了在血液中增強血型抗原表現弱化的紅血球凝集的方法,此設計概念來自於血型抗原數稀少,使得無法具有足夠的血型抗體反應促使紅血球凝集。因此,只要有足夠的血型抗原仍然有機會造成紅血球凝集。基於此概念,我們嘗試了四種不同的放大技術:第一種是利用一水溶性高分子 poly(acrylic acid) ,修飾上抗 anti-(RhD) antibody 的抗體(anti-mouse IgG),進而使得弱血型之血球可以藉由高分子上之二級抗體來達到凝集之效果;第二種是利用一水溶性高分子poly(allylamine),先將其上之 amine group 部份乙醯化(acetylation),來減少和血球細胞的非特異性鍵結(non-specific binding)之後再修飾上biotin形成新的高分子材料(Ac-pAAm-biotin),藉由 anti-(RhD) antibody、 anti-(mouse IgG), biotin conjugates、 Ac-pAAm-biotin、avidin 四者交互作用來達到弱血型凝集目的;第三種和第四種是將新的高分子材料(Ac-pAAm-biotin),置換成現有的兩種 biotin 修飾過的商品, bovine serum albumin, biotin conjugates和poly(acrylic acid) beads, biotin conjugates 來比較弱血型血液凝集的效果。由我們的實驗結果顯示,只有 bovine serum albumin, biotin conjugates 這組方式才有辦法達到快速(10分鐘)、檢體少(10λ,3%紅血球)、試劑少(20λ試劑)、準確性高、再現性高的標準,符合血庫快速篩檢之目的。zh_TW
dc.description.abstractThere is a problem that the false negatives of red blood cells(RBCs) with Rh(Del), causing hemolytic disease during blood transfusion and hemolytic disease of newborn (HDN), is sometimes happened in our blood centers where medical technologists identify them in general blood typing cards (Ortho BioVue System Microtyping card). Adsorption and elution method, the standard procedure of identifying Del, spends more times (at least an hour), quantities of sample (1c.c. RBCs), and costs (1c.c. reagent) than the method of microtyping card so that they do not use this method at pretransfusion testing. To solve this problem, we suppose that the appearance of false negative is due to less D antigens per RBC membrane than D positive persons. RBCs have no probability to agglutinate by monoclonal anti-(RhD) antibody. If we amplify D antigens from RBCs with Del, they could have been agglutinated because of the probability of agglutination arising. Base on this conception, we test four different kinds of antigen-antibody amplification techniques: the first is that a water soluble polymer, poly(acrylic acid), conjugated with secondary antibody, anti-(mouse IgG) which binds on anti-(RhD) antibody, would be used as an cross-linker that let RBCs with Del agglutinate; the second is that a new polymer (Ac-pAAm -Biotin), made from a water soluble polymer, poly(allylamine) which was partially acetylation and biotinylation, would be interact with anti-(RhD), anti-(mouse IgG)-biotin conjugates, and avidin to agglutinate RBCs with Del. The third and fourth are that alternatives of the new polymer (pAAm-Ac-Biotin), commercial bovine serum albumin, biotin conjugates (BSA-biotin) and poly(acrylic acid) beads, biotin conjugates (pAA beads-biotin), would be applied to agglutination of RBCs with Del. Our result revealed that only the third method, BSA-biotin, can prevent false negative efficaciously and this method is more rapid (about 10 mins) and less quantities of sample (10λ, 3% RBCs) and costs (20λ reagent) than adsorption and elution method.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:21:17Z (GMT). No. of bitstreams: 1
ntu-99-R97548030-1.pdf: 2452439 bytes, checksum: 223cdaeb88e2121d3b3a72675bf9a1e1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要.........................................................................................................................Ⅰ
Abstract............................................................................................................................Ⅱ
Contents...........................................................................................................................Ⅳ
Figures.............................................................................................................................Ⅷ
Tables.......................................................................................................................................................IV
Chapter 1. Introduction......................................................................................................1
Chapter 2. Background......................................................................................................7
2-1 The Rh blood group system..................................................................................7
2-2 Pretransfusion testing..........................................................................................11
2-3 Mechanism of agglutination of red blood cells...................................................19
2-4 Multivalent technique..........................................................................................21
Chapter 3. Materials and methods...................................................................................23
3-1 Materials..............................................................................................................23
3-2 Experiment apparatus..........................................................................................25
3-3 Synthesis, purification and identification of poly(acrylic acid), anti-(mouse IgG)
antibody conjugates.............................................................................................26
3-3-1 Synthesis of poly(acrylic acid), anti-(mouse IgG)
antibody conjugates...................................................................................26
3-3-2 Purification of poly(acrylic acid), anti-(mouse IgG)
antibody conjugates...................................................................................26
3-3-3 Native-PAGE.............................................................................................28
3-3-4 Coomassie blue stain..................................................................................29
3-3-5 Dot blot......................................................................................................29
3-4 Synthesis, purification and identification of Ac-pAAm-biotin...........................33
3-4-1 Partial acetylation of poly(allyl amine) (Ac-pAAm).................................33
3-4-2 ATR-FTIR spectrum...................................................................................33
3-4-3 H1-NMR spectrum.....................................................................................34
3-4-4 Measurement of acetylation rate of Ac-pAAm with ninhydrin assay........34
3-4-5 Biotinlytion of Ac-pAAm (Ac-pAAm-biotin)...........................................35
3-4-6 Measurement of biotinylation rate with 4-hydroxyazobenzene-2- carboxylic acid (HABA)/avidin reagent..................................................35
3-5 Pretreatment of RBCs..........................................................................................37
3-5-1 Recovery of frozen RBCs..........................................................................37
3-5-2 Preparation of 3% RBCs............................................................................38
3-6 Fabrication of AB reagent...................................................................................39
3-6-1 Preparation of reagent A............................................................................39
3-6-2 Preparation of reagent B............................................................................39
3-6-3 Preparation of reagent A for ABO blood group system.............................40
3-7 Identification of RhD, Partial D, Rh(Del), and Rh(D-) ......................................41
3-7-1 Conventional gel column method..............................................................41
3-7-2 Adsorption and elution method..................................................................41
3-7-3 Indirect method of identification of Rh(Del) by testing RhCcEe..............42
3-7-4 Gel column method with AB reagent.........................................................44
Chapter 4. Results and discussions..................................................................................45
4-1 Compound of poly(acrylic acid), anti-(mouse IgG) antibody conjugates for
testing RBCs with weak antigens......................................................................45
4-2 Compound of poly(allylamine), partial acetylation, biotin conjugates (Ac-pAAm-biotin) for testing RBCs with weak antigens.................................49
4-3 Compond of poly(acrylic acid) bead, biotin conjugates for testing RBCs with
weak antigens....................................................................................................55
4-4 Compound of bovine serum albumin, biotin conjugates (BSA-biotin) for testing RBCs with weak antigens..................................................................................57
4-5 Comparisons of time, sample, and cost between adsorption and elution method, RhCcEe method and AB reagent method..........................................................62
Chapter 5. Conclusion.....................................................................................................64
Reference.........................................................................................................................67
Appindex.........................................................................................................................76
dc.language.isoen
dc.title弱抗原血型快速且準確篩檢法之開發zh_TW
dc.titleDevelopment of a rapid and precise method of identifications for blood groups with weak antigensen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義,王先之,謝文元,羅仕錡
dc.subject.keywordRhD,Anti-(RhD) antibody,Biotin,avidin,弱D血型,放大效應,zh_TW
dc.subject.keywordRh(Del),RhD,Anti-(RhD) antibody,Biotin,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2010-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved