請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46613完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元 | |
| dc.contributor.author | Chih-Wei Chang | en |
| dc.contributor.author | 張芷瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:18:48Z | - |
| dc.date.available | 2010-09-13 | |
| dc.date.copyright | 2010-09-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-21 | |
| dc.identifier.citation | Al-Hajj, M., M. S. Wicha, et al. (2003). 'Prospective identification of tumorigenic breast cancer cells.' Proc Natl Acad Sci U S A 100(7): 3983-3988.
Alvi, A. J., H. Clayton, et al. (2003). 'Functional and molecular characterisation of mammary side population cells.' Breast Cancer Res 5(1): R1-8. Andre, F. and L. Pusztai (2006). 'Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy.' Nat Clin Pract Oncol 3(11): 621-632. Bhattacharya, S., A. Das, et al. (2007). 'Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling.' J Cell Sci 120(Pt 15): 2652-2662. Bleau, A. M., D. Hambardzumyan, et al. (2009). 'PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells.' Cell Stem Cell 4(3): 226-235. Blick, T., E. Widodo, et al. (2008). 'Epithelial mesenchymal transition traits in human breast cancer cell lines.' Clin Exp Metastasis 25(6): 629-642. Bolos, V., M. Blanco, et al. (2009). 'Notch signalling in cancer stem cells.' Clin Transl Oncol 11(1): 11-19. Boyer, L. A., T. I. Lee, et al. (2005). 'Core transcriptional regulatory circuitry in human embryonic stem cells.' Cell 122(6): 947-956. Brennan, K., G. Offiah, et al. (2010). 'Tight junctions: a barrier to the initiation and progression of breast cancer?' J Biomed Biotechnol 2010: 460607. Campbell, L. L. and K. Polyak (2007). 'Breast tumor heterogeneity: cancer stem cells or clonal evolution?' Cell Cycle 6(19): 2332-2338. Charafe-Jauffret, E., F. Monville, et al. (2008). 'Cancer stem cells in breast: current opinion and future challenges.' Pathobiology 75(2): 75-84. Choi, D., H. W. Lee, et al. (2009). 'Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma.' World J Gastroenterol 15(18): 2258-2264. Dean, M. (2009). 'ABC transporters, drug resistance, and cancer stem cells.' J Mammary Gland Biol Neoplasia 14(1): 3-9. Dey, D., M. Saxena, et al. (2009). 'Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.' PLoS One 4(4): e5329. Dontu, G., W. M. Abdallah, et al. (2003). 'In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells.' Genes Dev 17(10): 1253-1270. Dontu, G., K. W. Jackson, et al. (2004). 'Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells.' Breast Cancer Res 6(6): R605-615. Fletcher, J. I., M. Haber, et al. (2010). 'ABC transporters in cancer: more than just drug efflux pumps.' Nat Rev Cancer 10(2): 147-156. Glavinas, H., P. Krajcsi, et al. (2004). 'The role of ABC transporters in drug resistance, metabolism and toxicity.' Curr Drug Deliv 1(1): 27-42. Goodell, M. A., K. Brose, et al. (1996). 'Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.' J Exp Med 183(4): 1797-1806. Goodell, M. A., M. Rosenzweig, et al. (1997). 'Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species.' Nat Med 3(12): 1337-1345. Gottesman, M. M., T. Fojo, et al. (2002). 'Multidrug resistance in cancer: role of ATP-dependent transporters.' Nat Rev Cancer 2(1): 48-58. Hamilton, M. A., R. C. Russo, et al. (1977). 'Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays.' Environ. Sci. Technol. 11(7): 714-719. Hennighausen, L. and G. W. Robinson (2001). 'Signaling pathways in mammary gland development.' Dev Cell 1(4): 467-475. Hirschmann-Jax, C., A. E. Foster, et al. (2004). 'A distinct 'side population' of cells with high drug efflux capacity in human tumor cells.' Proc Natl Acad Sci U S A 101(39): 14228-14233. Ho, M. M., A. V. Ng, et al. (2007). 'Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells.' Cancer Res 67(10): 4827-4833. Jordan, C. T., M. L. Guzman, et al. (2006). 'Cancer stem cells.' N Engl J Med 355(12): 1253-1261. Meads, M. B., R. A. Gatenby, et al. (2009). 'Environment-mediated drug resistance: a major contributor to minimal residual disease.' Nat Rev Cancer 9(9): 665-674. Moserle, L., M. Ghisi, et al. (2010). 'Side population and cancer stem cells: therapeutic implications.' Cancer Lett 288(1): 1-9. Nakanishi, T., S. Chumsri, et al. (2010). 'Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling.' Br J Cancer 102(5): 815-826. Neve, R. M., K. Chin, et al. (2006). 'A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.' Cancer Cell 10(6): 515-527. Oliveira, L. R., S. S. Jeffrey, et al. (2010). 'Stem cells in human breast cancer.' Histol Histopathol 25(3): 371-385. Park, S. Y., H. E. Lee, et al. (2010). 'Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer.' Clin Cancer Res 16(3): 876-887. Patrawala, L., T. Calhoun, et al. (2005). 'Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic.' Cancer Res 65(14): 6207-6219. Reya, T., S. J. Morrison, et al. (2001). 'Stem cells, cancer, and cancer stem cells.' Nature 414(6859): 105-111. Reynolds, B. A. and S. Weiss (1992). 'Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.' Science 255(5052): 1707-1710. Subik, K., J.-F. Lee, et al. (2010). 'The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines.' Breast Cancer: Basic and Clinical Research 2010(4 ): 35–41. Tanaka, H., M. Nakamura, et al. (2009). 'The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side population of breast cancer cells.' Anticancer Res 29(6): 2147-2157. Tang, P., K. A. Skinner, et al. (2009). 'Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready?' Diagn Mol Pathol 18(3): 125-132. Vargo-Gogola, T. and J. M. Rosen (2007). 'Modelling breast cancer: one size does not fit all.' Nat Rev Cancer 7(9): 659-672. Vesuna, F., A. Lisok, et al. (2009). 'Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression.' Neoplasia 11(12): 1318-1328. Yin, L., P. Castagnino, et al. (2008). 'ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition.' Cancer Res 68(3): 800-807. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46613 | - |
| dc.description.abstract | 無論在全世界或台灣,乳癌都是造成癌症死亡的主因,也是女性最常見的癌症。乳癌細胞有很多種分類,若依據細胞雌激素受體(ER)、孕激素受體(PR)和人表皮生長因子受體2(HER-2)表現的不同,乳癌細胞可分為管狀A型(Luminal A)、管狀B型(Luminal B)、HER2過度表現型(HER2)、基底A型(Basal A)、基底B型(Basal B),而不同類型的乳癌細胞有不同的生物特性與治療反應,也因為乳癌細胞的複雜性增加了乳癌治療的困難度。而化療是治療乳癌最常用的方式之一,但抗藥性和癌症復發是仍待解決的重要議題。根據癌幹細胞(cancer stem cell)假說,癌幹細胞是癌細胞中一小群具有幹細胞特性、癌症形成能力,且對化療藥較具抗藥性的細胞,而這可能是治療乳癌的關鍵。乳腺球群細胞(mammosphere)和側群細胞(side population)都被認為是乳癌幹細胞的指標,而我們發現側群細胞與乳腺球群細胞只表現在管狀型細胞。為了瞭解側群細胞與乳腺球群細胞之間的關係,我們測試側群細胞形成乳腺球群細胞之能力並且分析乳腺球群細胞中側群細胞的比例。結果發現,側群細胞比非側群細胞具有更高的乳腺球群細胞形成能力,且乳腺球群細胞比單層細胞具有更高的側群細胞比例,顯示出側群細胞中富含可形成乳腺球群細胞的細胞。我們研究乳癌細胞株(MCF7)的側群細胞特性,發現它比非側群細胞(non-side population)表現較高的ABC轉運蛋白(ABCG2)和幹細胞基因Notch-1,具較高的細胞簇(colony)形成能力,且對化療藥有較高的抗藥性,顯示出側群細胞確實具有癌幹細胞特性。此外,側群細胞的抗藥性會受到細胞外基質(extracellular matrix)影響而增高。由這些結果我們知道,乳腺球群細胞和側群細胞適用於管狀型乳癌幹細胞之辨識,且這兩群細胞可能是互相重疊的,若能針對這兩群細胞研究治療方法,就能增加管狀型乳癌細胞之治療效果。 | zh_TW |
| dc.description.abstract | Breast cancer is a leading cause of cancer-related death and is the most prevalent cancer among women worldwide, including Taiwan. There are many classifications of breast cancer cells. Based on the expressions of ER, PR, and HER2, breast cancer cells can be classified into Luminal A, Luminal B, HER2, Basal A, and Basal B subtypes. Because breast cancer is heterogeneous and complex that different types of breast cancer cells have different biological characteristics and respond differently to therapy, the treatment in breast cancer is challenging. Chemotherapy is one of the common therapeutic strategies in breast cancer, but drug resistance and recurrence are important issues to solve. According to the cancer stem cell hypothesis, cancer stem cells are a small population with stem cell-like properties, tumor-initiating ability, and more resistant to chemotherapy, and these may be critical in the treatment in breast cancer. Mammosphere and side population (SP) have been identified as candidates for breast cancer stem cells. We found that SP and mammosphere were more prevalent in the Luminal type than the Basal type breast cancer cells. To investigate the relationship between SP and mammosphere, we performed SP analysis on mammospheres and mammosphere formation assay on SP cells, and the results showed that mammospheres had higher SP expression than the monolayer cells. Furthermore, the SP had higher mammosphere formation ability than the NSP, suggesting that mammosphere-forming cells were enriched in SP cells. We investigated the characterizations of MCF7 SP cells, and we found they had higher ABCG2 and Notch-1 expressions, higher colony formation ability, and more resistant to chemotherapy than the non-side population (NSP), indicating that SP had cancer stem cell properties. Besides, the drug resistance of the SP could be increased on extracellular matrixes (ECMs). In conclusion, mammosphere and SP could identify the cancer stem cell population in Luminal type breast cancer cells, and these two populations might be overlapping. Therapeutic strategies targeting on these two populations may have significant effect on Luminal type breast cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:18:48Z (GMT). No. of bitstreams: 1 ntu-99-R97443015-1.pdf: 2343791 bytes, checksum: ee9a7c1d433e1870eef39a313f3c032f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abbreviation.............................................vi
中文摘要................................................vii Abstract.................................................ix Chapter 1 Introduction....................................1 1.1 Breast cancer....................................2 1.1.1 Breast cancer overview...........................2 1.1.2 Classification of breast cancer cells............2 1.1.3 Chemotherapy in breast cancer....................3 1.2 Cancer stem cell.................................4 1.2.1 Cancer stem cell overview........................4 1.2.2 Cancer stem cells in drug resistance and recurrence................................................5 1.2.3 Identification of breast cancer stem cells.......6 1.2.4 Side population (SP).............................6 1.2.5 Mammosphere......................................8 1.3 ATP-binding cassette (ABC) transporter...........9 1.4 Motivation......................................10 1.5 Aim.............................................12 Chapter 2 Materials and Methods..........................13 2.1 Breast cancer cell lines........................14 2.2 Primary cells from clinical samples.............14 2.3 SP analysis and sorting.........................15 2.4 Flow cytometry analysis of CD44/CD24 expression ................................................16 2.5 Mammosphere culture.............................17 2.6 Mammosphere formation assay.....................18 2.7 Colony formation assay..........................18 2.8 Drug sensitivity assay..........................19 2.8.1 Drug sensitivity assay on non-coated plates.....19 2.8.2 Drug sensitivity assay on ECMs..................19 2.9 Reverse transcription-polymerase Chain Reaction (RT-PCR).................................................20 2.9.1 Total RNA extraction............................20 2.9.2 Reverse transcription (RT)......................21 2.9.3 Polymerase chain reaction (PCR).................21 2.10 Real-time RT-PCR................................22 Chapter 3 Results........................................23 3.1 mRNA expression profiles in breast cancer cells ................................................24 3.2 SP and mammosphere were more prevalent in Luminal type breast cancer cells.................................25 3.3 A major CD44+/CD24- population was a characteristic of Basal B type breast cancer cells.......26 3.4 MCF7 mammosphere-forming cells were enriched in SP ................................................26 3.5 MCF7 SP had cancer stem cell properties.........27 3.6 Drug resistance of MCF7 SP......................28 Chapter 4 Discussion.....................................30 4.1 The identification of cancer stem cell population differed in different types of breast cancer cells.......31 4.2 Regulatory factors in SP........................32 4.3 ECM-induced drug resistance of SP...............34 4.4 The relationship between SP and mammosphere.....34 Figures and Tables.......................................36 Reference ................................................59 Appendix.................................................63 | |
| dc.language.iso | en | |
| dc.subject | 管狀型乳癌細胞 | zh_TW |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | 側群細胞 | zh_TW |
| dc.subject | 乳腺球群細胞 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | Luminal type breast cancer cell | en |
| dc.subject | side population | en |
| dc.subject | cancer stem cell | en |
| dc.subject | mammosphere | en |
| dc.subject | drug resistance | en |
| dc.title | 乳癌細胞之乳腺球群細胞與側群細胞之關聯性與抗藥性之探討 | zh_TW |
| dc.title | The relationship between mammosphere and side population and the study of drug resistance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張金堅,符文美,黃彥華,謝豐舟 | |
| dc.subject.keyword | 癌幹細胞,側群細胞,乳腺球群細胞,抗藥性,管狀型乳癌細胞, | zh_TW |
| dc.subject.keyword | cancer stem cell,side population,mammosphere,drug resistance,Luminal type breast cancer cell, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
